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ABSTRACT

Soundscape composition and design is the creative practice
of processing and combining sound recordings to evoke
auditory associations and memories within a listener. We
present a new set of classification and segmentation algo-
rithms as part of Audio Metaphor (AUME), a generative
system for creating novel soundscape compositions. Au-
dio Metaphor processes natural language queries from a
user to retrieve semantically linked sound recordings from
a database containing 395,541 audio files. Building off
previous work, we implemented a new audio feature extrac-
tor and conducted experiments to test the accuracy of the
updated system. We then classified audio files based on gen-
eral soundscape composition categories, improved emotion
prediction, and refined our segmentation algorithm. The
model maintains a good accuracy in segment classification,
and we significantly improved valence and arousal predic-
tion models - as noted by the r-squared (72.2% and 92.0%)
and mean squared error values (0.09 and 0.03) in valence
and arousal respectively. An empirical analysis, among
other improvements, finds that the new system provides
better segmentation results.

1. INTRODUCTION

Soundscape composers aim at creating a type of electroa-
coustic music that is “characterized by the presence of rec-
ognizable environmental sounds and contexts, the purpose
being to evoke listeners associations, memories, and imag-
ination related to the soundscape” [1]. Figure 1 demon-
strates the relationships of these sound design contexts on
the continuum moving from realistic to abstracted. Compu-
tationally assistive tools for sound design and soundscape
composition production focus on soundscapes trending to-
ward the real end of this continuum.

Recent advancements of our Audio Metaphor (AUME)
generative audio model expand the system’s ability to pro-
duce sonic experiences with depth and clarity. As sound
designers and soundscape composers use creative and tech-
nical strategies to communicate the sense of a place as
perceived by a listener, an important factor of a soundscape
or sound design includes valence and arousal in people’s
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perception. Russel introduces these factors in a circumplex
model that facilitates evaluation and analysis of a stimulus
such as sound [2]. AUME expands on previous work in
soundscape emotion recognition with a unique interface to
modulate valence and arousal.

The system’s most recent iteration draws on a database
of 395,541 hand-tagged files. Updated segment descrip-
tion algorithms improve emotion recognition significantly
while maintaining classification accuracy. Background-
foreground segmentation and composition processes are au-
tomated through simple natural language queries in AUME.
A smoothing algorithm now produces superior boundary
delineation of the emotive audio signal while maintaining
temporal resolution. This level of automation affords sound
designers the ability to create long, complex soundscapes
with a simple text query. These improvements, combined
with the interactive speed of AUME, can provide state-of-
the-art solutions in sound design and soundscape composi-
tion.
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Figure 1. Continuum of ambience focus from real sounding
environments, to more abstracted spaces. Production con-
texts range across the continuum. Figure from Thorogood
etal. [3].

2. RELATED WORK

Generative soundscape models objective is to reduce the
time-consuming practice in sound design of searching, im-
porting, editing, sequencing, and arranging audio files from
often unwieldy, massive online audio databases. Birch-
field et al. describe a system that uses an adaptive user
model for context-aware soundscape composition [4]. In
their work, the system has a small set of hand-selected
and hand-labeled audio recordings that were autonomously
mixed with minimal processing. Similarly, Eigenfeldt and
Pasquier employ a set of hand-selected and hand-labeled
environmental sound recordings for the retrieval of sounds
from a database by autonomous software agents [5]. In
their work, agents analyze audio when selecting sounds to
mix based on low-level audio features.
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Like AUME, Teixeira et al. demonstrate a model that
bypasses the tagging step through automating the browsing
and retrieval of audio from large databases by employing
Russel’s widely used model of valence and arousal [6]. The
MScaper system [6], integrated into Ableton Live DAW,
similarly supports the adoption of the valence and arousal
model for retrieving soundscapes. The valence and arousal
model to facilitate soundscape generation also shares syner-
gies with automated feature extraction developed by Music
Information Retrieval systems (MIR). Bellisario and Pi-
janowski explore contributions of MIR to the emergent field
of soundscape ecology and demonstrate how methodologies
of automated feature extraction, sound classification and la-
beling using machine learning, and data visualization might
be extended to soundscapes [7]. In further studies, Teixeira
et al. have mapped how MScaper performs by using crowd-
sourced affective annotations from the Emo-Soundscapes
dataset and mapped affective dimensions and low-level au-
dio descriptors [6]. MScaper supports audio database navi-
gation through a valence and arousal model, generating an
adaptive soundscape according to emotional states. While
AUME similarly employs a valence and arousal model,
its unique composition engine utilizes a combination of
Natural Language Processing (NLP), background and fore-
ground classification, and segmentation to set it apart from
related models in soundscape generation.

3. PREVIOUS WORK

Audio Metaphor (AUME) is a system for creating computer-
assisted creation of soundscape compositions. Before this
system update, the system performed better than random
baseline in pleasantness, eventfulness, believability, and se-
mantics [3]. The authors demonstrated AUME in the form
of an art installation that derived natural language queries
from Twitter. The queries were then used to generate sound-
scapes to reflect trending events in the social landscape.
In previous research on Audio Metaphor, we established a
framework for the system [8] (presented in Figure 2) and
continue to describe each element throughout this section.

3.1 Corpus

The audio corpus consists of 395,541 sourced sound files
from which we generate soundscapes. We save the audio
files from source to disk to create the database. As described
in the following sections, segmentation is required to obtain
the short audio segments used for the automatic soundscape
composition.

3.2 Crawler

The crawler is responsible for building the AUME database.
It implements our feature extraction, classification, emotion
recognition, and segmentation on a collection of audio files.
The crawler finds an audio file, runs the pipeline, then saves
the resulting segments into the AUME database. Each data
entry in our database contains a file path to the raw MP3
audio data, associated file tags, and segment data. This
segmentation and classification section, shown at the top
of Figure 2, only runs once to build the AUME database.
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Figure 2. System diagram. Background, foreground, and
background with foreground as BG, FG, and BGFG respec-
tively.

After the crawler retrieves an audio file, the first job in the
pipeline is feature extraction.

3.3 Feature Extraction

The audio feature set we generate in feature extraction con-
tains spectral and perceptual audio descriptors of high and
low levels. These descriptors attempt to model the human
auditory system. This is desirable from a soundscape stud-
ies perspective, where the perception of the human listener
is an important consideration. These features lay the foun-
dation for the new classifier and emotion prediction models
in Sections 7 and 8 respectively.

3.4 Feature Aggregation

We aggregate features using a bag of frames approach,
where a signal is represented as a statistical distribution.
The extractor provides feature data based on the input sig-
nal. We then divide that feature data into frames from which
we can calculate the mean, standard deviation, skewness,
variance, and their respective derivatives, and second deriva-
tives. Frames do not sit end to end but overlap 50% with
previous and following frames. To represent windows in
an audio file, we group the output statistical data into seg-
ments. The segments can then be individually analyzed by
our classification and emotion prediction algorithms.



3.5 Audio File Classification

An audio recording can be divided into the general classes
of background, foreground, and background with fore-
ground sounds. Sound designers and soundscape composers
manually segment audio files into building blocks for use
in a composition. We use machine learning to classify
segments in an audio file automatically. As shown in Fig-
ure 2, the classifier uses extracted features to classify each
segment in the audio file as foreground, background, or
background with foreground. In previous work, our support
vector machine (SVM) classifier achieved a true positive
rate of 87.77%, a false positive rate of 12.22%, and a Kappa
interrater reliability statistic of 0.8167. Audio file classifica-
tions are saved in the database to be used as the backbone
in composition by the conductor. Next, we improve our
composition further by adding emotion metrics for each
segment.

3.6 Emotion Prediction

With the ability to interpolate Russel’s circumplex model
shown in figure 3, AUME retrieves audio segments eval-
uated on a scale of valence and arousal. Russel’s model
suggests all emotions are distributed in a circular space.
High levels of valence correspond to pleasant sounds while
low valence levels correspond to unpleasant sounds. Fur-
ther, high levels of arousal correspond to exciting sounds
while low levels correspond to calming sounds. Sound
designers evoke emotion from a listener by dynamically
controlling valence and arousal levels throughout a com-
position. We quantify levels of valence and arousal using
machine learning for emotion prediction. The emotion pre-
diction models use a subset of extracted features to predict
valence and arousal for each segment in an audio file. We
store the results in the AUME database for use in composi-
tion, a process we further explain in section 3.9. Previously,
our emotion prediction models accounted for 62.9% and
85.5% for valence and arousal, respectively.

3.7 Segmentation

In segmentation, we aim to group background-foreground
classified segments perceived as belonging to the same
class. In the pipeline 2, segmentation is the final step before
adding our segment data to the AUME database. We use
segment information and background, foreground labels
to filter, then conjoin like classes. We use a filtering algo-
rithm to remove the noise of misclassified segments and
negligible class appearances between two segments of the
same class. The consequence of filtering is a resolution
loss where detail can be reduced. In contrast, filtering can
provide greater continuity from increased segment length,
and therefore, more natural-sounding compositions. After
we use the filtering algorithm, we finalize the segments by
grouping adjacent segments belonging to the same class.
The crawler finishes the audio prediction side of AUME by
saving segment information into the database.
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Figure 3. Common emotions displayed on the circumplex
model of affect presented by Russel [2]. Arousal (eventful-
ness) occupies the vertical axis while valence (pleasantness)
occupies the x axis.

3.8 Audio File Retrieval Using Natural Language
Processing

The Audio Metaphor project uses an algorithm called SLiCE
to process user input query text [8]. In the Natural Language
Processing pipeline, common words listed in the Oxford
English Dictionary Corpus are removed from the query,
leaving only nouns, verbs, and adjectives. Words are kept
in order and treated as a list. For example, with the word
feature list from the natural language query: “The angry
dog bit the crying man,” ”angry dog bit crying man,” is
more valid than “angry man bit crying dog.” For a user
input text with n words, the SLiCE algorithm constructs
sublists of words of size / to n from the user input text to
maximize the ability to match the appropriate sound seg-
ments. All unique sublists are put in a queue and used as
search queries, starting with the longest first. When a search
query returns a satisfactory result, all remaining queries that
contain any of the successful word features are removed
from the queue. The aim of the algorithm is to minimize
the number of audio files returned and still represent all the
word features in the list.

3.9 Conductor

The conductor is responsible for composing soundscapes us-
ing the audio supplied by the user query and associated class
and emotion data. When a user queries the system, they can
specify curves for valence and arousal to achieve a sound-
scape with their desired emotional characteristics. The con-
ductor arranges segments that result from the search accord-
ing to the specified curves. Next, the conductor mixes the
tracks and renders the soundscape. Finally, AUME presents
the resulting computationally generated soundscape to the
user.



4. BUILDING A MODERN PIPELINE

To further research and develop Audio Metaphor, we move
towards a state-of-the-art system to replace the YAAFE
[9] audio feature extractor with Essentia [10]. Actively
maintained by The Music Technology Group (MTG) of
the University Pompeu Fabra in Barcelona, Essentia offers
a more significant number of audio features. We expect
Essentia to represent audio files with a higher degree of
explanatory power and offer an opportunity to improve our
predictive models - a process we explore in sections 7 and 8.
Further, we investigate segmentation algorithms and their
effects to tune the system for the best practical results.

5. CORPUS

The database for this project is a corpus of 395,541 audio
files, a 96.8 fold increase from the original database of 4085
files. We extract files from the Freesound.org project us-
ing the Freesound API. The audio files from the Freesound
project are uploaded in various formats (MP3, WAV, AIFF)
and variable sample rates (130kbps to 196kbps) by individ-
ual users. They are accompanied by a collection of textual
tags that describe the audio content’s nature. The Freesound
project processes the uploaded audio content to create nor-
malized MP3 versions and metadata of sonic analysis. We
extract audio files of duration ranging from two seconds up
to 10 minutes. We do not use Freesound’s sonic analysis
as we tailor our own feature extraction to meet our specific
needs.

6. FEATURE EXTRACTION

Essentia is an open-source C++/Python library for audio
and music analysis. We use Essentia to sample corpus audio
at full 22050Hz AIF format. In our bag of frames approach,
we apply a frame size of 2048 samples and an analysis step
of 1024 samples. We use the Blackman-Harris windowing
function for spectral features. We use various statistics
mentioned in section 3.4 to aggregate the features. To see all
specific features we extract, see the Essentia documentation
under the categories low-level stats and tonal stats [10].
This windowing configuration and subsequent analysis step
result in high descriptive power for representing the texture
and overall dynamics of the sound. Since we achieved good
results with this method, we did not explore other window
configurations.

7. SUPERVISED CLASSIFIER FOR
SEGMENTATION

7.1 Corpus

We use the corpus created by Thorogood et al. [11], a cu-
rated collection of BF labeled sound files from the World
Soundscape Project Tape Library database (WSPTL) [12].
The WSPTL contains five unique collections of sound-
scape recordings, with a total of 2545 individual sound
files amounting to over 223 hours of high-quality, carefully
selected recordings. The collections gathered between 1972
and 2010 are comprised of recordings from across Canada

and Europe. Recording equipment included a Nagra IV-S
field recorder and a pair of AKG condenser microphones.
Collections are digitized and held online at Simon Fraser
University [13].

The corpus is composed of 200 4-second samples from the
WSPTL. Independent listeners confirmed 4-seconds was
sufficient length for identifying the context of the sound.
Further, the corpus is compact, so participants finished
the study with minimum listening fatigue. Additionally,
samples are short to preserve their class homogeneity for
machine learning. The types of sounds cover the six sound-
scape categories defined by Schafer: natural sounds, human
sounds, sounds and society, mechanical sounds, quiet and
silence, and sounds as indicators. [14]. We mix the audio
down to mono in favor of a higher degree of generality of
the system. This compensates for recordings not obtained
with similar high precision equipment or those recorded in
mono.

Figure 4 shows the study’s category agreement for the top
30 most agreed upon sounds by the study participants for
each category, a data subset we call the BF90. A quanti-
tative analysis of responses against the final corpus shows
that participants agree on the category assigned to 92.5%
(SD=3.6%) of the background samples, 80.8% (SD=9.5%)
of foreground samples, and 75.3% (SD= 11.3%) of the
background with foreground.
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Figure 4. Box plots and mean lines for the agreement
of labels for the corpus of background, foreground, and
background with foreground recordings. The light grey line
represents the overall mean agreement for the three classes.
Figure from Thorogood et al. [11].

7.2 Model

Ridge regression is a type of regularized linear regression
that incorporates techniques to reduce model complexity
and prevent overfitting. In ridge regression, L2 regulariza-
tion augments the cost function by adding a penalty equiva-
lent to the square of the magnitude of the regression coeffi-
cients. This method performs well in cases where variables
are highly correlated or the number of features exceeds the
number of data points. We use the Scikit Learn [15] imple-
mentation of the ridge regression classifier which converts



binary targets to -1, +1, then performs multi-output regres-
sion. The predicted class is the output with the highest
value. We use the default regularization strength of one.

7.3 Method

We perform an evaluation of the BF-Classifier using a re-
peated 10-fold cross-validation strategy on the BF90 dataset.
This method randomly partitions the validation set into k
= 10 equally sized sub-samples before iteratively testing
the remaining sub-samples against each k-partition. We
repeat the evaluation 10 times to reduce noise in the 10-fold
evaluation.

7.4 Evaluation

Model prediction results are shown in Table 1 and a sum-
mary is shown in Table 2. The classifier achieves an overall
true positive rate of 83.0%. An inter-rater reliability analy-
sis using the kappa statistic determines the consistency of
the classification. In this case, the kappa statistic of 0.743
shows good reliability of the classification results over the
10-fold validation.

BG | FG | BGFG
BG 23 |2 5

FG 0 29 |1
BGFG | 5 2 23

Table 1. Confusion matrix of SVM classifier for the cate-
gories background (BG), foreground (FG), and background
with foreground (BGFG).

True Positive 83.0%
False Positive | 9.30%
Kappa statistic | 0.743

Table 2. Average true positive, false positive, and Kappa
statistics of the ridge regression classifier.

8. REGRESSION FOR EMOTION PREDICTION
8.1 Corpus

We use the Emo-Soundscapes dataset for emotion recog-
nition [16]. The dataset consists of 1213, 6-second long
monophonic audio clips. Fan et al. curated 600 sounds from
Freesound.org and mixed 613 audio clips from a combina-
tion of these. Additionally, the dataset contains a ranking
for the perceived emotion in the 2D valence arousal space.
They source rankings from 1182 trusted annotators from
74 different countries. The 1182 trusted annotators had a
gold standard of 92.18% accuracy and provided a total of
69477 pairwise comparisons. We use the provided ratings,
a translation of the rankings from 1 to 1213 mapped to a
linear space between 1 to -1 inclusive.

8.2 Model

We use the Scikit Learn [15] implementation of random
forest regression in prediction for both Valence and Arousal.
It is a supervised learning technique that uses an ensemble
method for classification and regression. Ensemble learning
methods combine multiple algorithms to produce superior
robustness than any of the component algorithms alone.
In the case of the random forest, bootstrap aggregation
(bagging) on each tree reduces the high variance of the
decision tree. The result is a flexible model with reduced
susceptibility to overfitting compared to a decision tree
alone. It shows superior results compared to the support
vector regression model provided by the emo-soundscapes
data set and comparable results to deep learning methods
[17].

8.3 Method

We randomly split the dataset into training and holdout
sets; 80% for the training set and the remaining 20% for
the holdout set. We perform feature selection to improve
computational costs and improve model performance. We
use 10-fold cross-validated recursive feature elimination
on the training set. Most features were eliminated, with
a 604 to 72 and 604 to 67 feature reduction in arousal
and valence, respectively. Next, we tune hyper-parameters
using five-fold cross-validation on the training set utilizing a
range of values for maximum depth, minimum leaf samples,
and minimum samples split. Finally, we perform the final
evaluation on the holdout set.

8.4 Evaluation

We use Mean Squared Error (MSE) and R? to evaluate
the performance of the models. Results expressed in Ta-
ble 3 prove superior models when compared to previous
research. The most recent previous model results using
support vector machines (SVM) demonstrated 85.5% and
62.9% for arousal and valence, respectively [16], a signif-
icant improvement on previous research [18]. Our new
model accounts for 92.0% and 72.2% of the variance for
arousal and valence, respectively. Compared to deep learn-
ing methods, our random forest regression model achieves
similar performance with a 2.8% improvement in arousal
prediction and a 3.75% performance reduction in valence
prediction. MSE values have also improved when compared
to the most recent SVM models and are comparable to deep
learning models. MSE of the arousal model has improved
from 0.035 to 0.03 while the MSE of the valence model has
waned from 0.078 to 0.09. We have achieved an increase in
both valence and arousal model accuracy, but there is still a
clear distinction in performance between the models. We es-
timate that while features like loudness can loosely predict
arousal, valence has fewer strongly correlated descriptors,
which results in a less accurate model.

Metrics | Arousal | Valence
R? 0.920 722
MSE 0.03 0.09

Table 3. Performance of Valence and Arousal models.
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9. SEGMENTATION

In this section, we take the results of previous segmentation
work [11] and further refine the segmentation process to
yield accurately labeled audio files. Thorogood et al. (2016)
explore three segmentation algorithms: median filtering,
k-depth lookahead, and Maximizing Posterior Probability
(MPP). We empirically explore these algorithms in practice,
then implement a solution to a prevalent misclassification
problem.

9.1 K-Depth Look ahead

The K-depth algorithm traverses the list of segments and
searches k-depth ahead of segment A to find the furthest in-
stance B of the same class. If it finds a match, all instances
of classes between the initial segment A and matched seg-
ment B are reclassified to match segments A and B. The
algorithm then continues from the segment after B. If no
match is found, we continue from the segment after A.

We evaluate the median filtering, k-depth lookahead, and
MPP algorithms by segmenting 15 audio files and compar-
ing the results. The median filtering algorithm smooths
nicely but loses valuable foreground segments at all k val-
ues. In Figure 7, we show the results of median filtering for
k values of 0 to 7. The MPP algorithm performed well over-
all, but ultimately the k-depth lookahead algorithm yielded
the best smoothing while maintaining resolution. Similarly,
Thorogood et al. [11] find the k-depth algorithm performs
best, though we note that their evaluation window is 0.25
seconds while ours is set to 1.5 seconds. We set the k-value
to 2 and give preference to foreground segments.

9.2 Margin Smoothing

In audio engineering, it is common to fade samples in
and out. With the abundance of features we extract, the
fade must have some non-trivial effect on the classifica-
tion model. From the previous classifier, we observe an
unusually high presence of foreground classification for
the foremost and rearmost segments. Figure 7 shows a 44-
second long example audio file that contains no foreground
segments other than where the fade occurs: the margins.
Every fade is likely misclassified as foreground because

F |F-F - F

Figure 6. K-depth segmentation system jumping k = 3 then
searching k - 1 and backtracking to relabel windows. Figure
from Thorogood et al. [11].

they emulate the high standard deviation in features com-
monly present in a foreground sound. We implement a
margin smoothing technique for every file that uses a me-
dian filter to smooth the first and last segments classified
as foreground. The median filter causes a loss of resolu-
tion at the margins but justifies itself by reducing overall
classification error.

Figure 7. Median Filter Testing

10. RESULTS

To assess the performance of the new implementation of
AUME, we compare segmentation between old and new
systems. This comparison proves that the pipeline has been
successfully reconstructed; we use it to evaluate the charac-
teristics of each system. We extract background-foreground
labeled segments from 15 audio files of various soundscape
classifications using the results from the new system to
compare them to the old system. The first comparison
is illustrated in Figure 8, where the new system achieves
identical results in the classification of this 44-second long
audio clip containing sounds of the seashore. This compar-
ison shows successful replication of the pipeline but fails
to show any improvements or shortcomings on the new
system. The second comparison is illustrated in Figure 9,
where the new model shows slightly smoother results with
only 10 segments compared to 12. This is representative
of most other comparisons in that there are fewer total seg-
ments in the output of the new model. Additionally, Figure
9 demonstrates the effect of margin smoothing. The first
segment produced by the old model is incorrectly classified



as foreground due to the fading effect mentioned in section
9.2. The new model corrects for this and correctly classifies
the segment as background.
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Figure 8. Labelled audio segments generated by previ-
ous (middle) and current (bottom) models for performance
comparison for an audio file with identical results. The
waveform (top) is displayed using the Audacity software.
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Figure 9. Labelled audio segments generated by previ-
ous (middle) and current (bottom) models for performance
comparison for an audio file with divergent results. The
waveform (top) is displayed using the Audacity software.

11. CONCLUSION

We describe a soundscape composition engine that chooses
audio segments using natural language queries, segments
and classifies the resulting files, processes them, and com-
bines them into a soundscape composition at interactive
speeds. This implementation takes user input to generate
search queries and retrieves audio files that are semanti-
cally linked to audio files in the database. Sound designers
can specify curves for valence and arousal to modulate the
perceived emotion of the track over time.

The new AUME takes steps to improve generative sound-
scape composition by vastly expanding the database, imple-
menting a robust classifier, drastically improving emotion
prediction, and improving smoothness using segmentation.
We expand the AUME database by 96.8 fold to increase sys-
tem range and depth. System range is increased by covering
a larger number of unique tags, while depth is increased by
having more variations of tags already in the system. While
the classifier model falls short by 3% when compared to
the old classifier, it achieves similar results in practice 8.
We improve prediction in arousal by 8.2% and valence by
15.6%. These improvements in emotion prediction offer the
sound designer greater control in the depth and movement
of emotion.

Audio Metaphor can be used to improve the productivity
of sound designers by automating tedious audio database
searches. Further, AUME automates the background, fore-
ground segmentation process and composition. This level
of automation affords sound designers and soundscape com-
posers the ability to create long, complex soundscapes with
a simple text query. When the length of the soundscape

proves arduous for composers and designers, AUME of-
fers a practical and efficient creative solution. Example
soundscapes generated by AUME can be viewed online ' .
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