
PreGLAM-MMM
Application and evaluation of affective adaptive generative music in video games

Cale Plut
cplut@sfu.ca

Simon Fraser University
Surrey, Canada

Philippe Pasquier
Simon Fraser University

Surrey, Canada
pasquier@sfu.ca

Jeff Ens
jeffe@sfu.ca

Simon Fraser University
Surrey, Canada

Renaud Bougueng
rbouguen@sfu.ca

Simon Fraser University
Surrey, Canada

ABSTRACT
We present and evaluate an application of affective adaptive gener-
ative music in a single-player, action-RPG video game. We create
a score that serves as an audience to the gameplay, based on the
output of PreGLAM, which models the emotional perception of a
game audience. We use the Multi-track Music Machine to expand
and extend a composed adaptive musical score, and we use industry-
standard production techniques to synthesize and perform all of
our musical scores. We evaluate our application of generative music
in comparison to two composed scores, one adaptive and one linear.
Our generative score is rated as nearly equivalent to a composed
linear score in perceptions of emotional congruency, immersion,
and preference.

CCS CONCEPTS
• Software and its engineering → Interactive games; • Infor-
mation systems → Multimedia content creation; • Human-
centered computing → Auditory feedback; Empirical studies
in HCI ; Empirical studies in interaction design; Systems and tools
for interaction design; • Computing methodologies → Artificial
intelligence.
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1 INTRODUCTION
Music is present in some form in almost all video games. Most
music in games is composed by one or more humans, and is either
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performed by human musicians and/or synthesized into audio for-
mat. While music is generally linear, and plays without reacting to
external input, video games are interactive, and respond to the in-
puts of one or more players. To create music that matches gameplay,
video game composers may use “adaptive music”, sometimes called
“interactive music”, which is music that can be altered based on a
control input. Adaptive music is a powerful tool for creating music
that matches gameplay, but using adaptive music requires specific
techniques that can significantly increase a composers workload.
Adaptive music is primarily used when music is serving as an “au-
dience” to the gameplay, commenting on the successes and failures
of the player [16].

Generative music is created with some degree of systemic au-
tonomy from its input. Because video games almost universally
have some degree of systemic autonomy from their input, it may be
argued that all game music is generative. However, we follow Plut
and Pasquier’s definition of generative music in games as having
systemic autonomy from the game logic [21]. For example, if a
single piece is cued when the game state changes in an identical
fashion each time, we do not consider this generative. Depending
on the algorithm, generative music systems are capable of produc-
ing large amounts of musical content in minutes, seconds, or even
in real-time.

There are two main approaches to applying generative music
in video games [21], which we will discuss further in Section 2.2.
Academic research generally focuses on the use of novel algorithms
for online real-time generation of symbolic music to entirely re-
place a composed score [10, 17, 28, 31], while approaches from the
games industry primarily use stochastic methods to target real-time
sequencing of audio stems.

Academic systems most commonly generate and synthesize mu-
sic in real timewith General MIDI sounds. These systemsmostly use
some form of player experience model, commonly affect-oriented,
to control the adaptivity of the generative music. These systems
produce novel music that can theoretically match the events of a
game, but lack timbral and performative features when compared
to contemporary video games.

Systems from the games industry generally use pre-rendered or
recorded audio stems, sequenced together with stochastic meth-
ods. These systems generally extend adaptive musical methods of
horizontal resequencing and vertical remixing [29]. This approach
produces music that has equal performative fidelity to linear music,
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but can often reduce the expressive range of the music, as the music
must be composed so that the combined arrangements won’t clash
with each other [16].

We present a hybrid approach to utilizing generative music in
video games, discussed further in Section 3.2. We use Ens and
Pasquier’s Multi-track Music Machine (MMM) [5] transformer
model to generate multi-track symbolic variations of a composed
adaptive score, as we discuss in Section 3.3. The composition of
our adaptive score is informed by previous research in composing
music to express desired affect in a Valence-Arousal-Tension model
of emotion [23]. We use the musically-focused audio middleware
program Elias [4] to control our adaptive scores based on the output
of PreGLAM. We also compose a linear score that is based on the
adaptive score.

To model the gameplay emotion and inform the musical adap-
tivity, we use Plut et al.’s Predictive Gameplay-based Layered Affect
Model (PreGLAM) [22] as discussed in Section 2.3. PreGLAM is an
artificial cognitive agent with privileged game information, that
models the real-time perceived affect of a biased game spectator.
We implement PreGLAM as biased towards the player winning the
game, though other biases may be provided.

We use VST instruments to render our scores into audio, to
increase the quality of synthesis compared to previous uses of
General MIDI. At the time of this writing, real-time synthesis of
symbolic music during gameplay is unable to match the quality
and fidelity of offline synthesis, such as by VST instruments. We
therefore render our symbolic tracks via Ableton Live.

Our approach focuses on providing an application of generative
music that builds on previous literature in the area, while increas-
ing the synthesis, production, and performance fidelity of musical
scores from previous applications. Our approach also increases
the expressive range of the music compared to previous attempts,
by utilizing a 3-dimensional VAT model of emotion. We addition-
ally evaluate our generative score in comparison to an adaptive
score and a linear score that share identical production methods.
Effectively, we target an increase in external validity compared to
previous applications, without sacrificing experimental control.

We empirically evaluate our application of generative music
in a study with 48 participants, and find that our application of
generative music performs consistently with linear music, and
outperforms composed adaptive music in participant perception
of emotional congruency, player immersion, and preference. Our
approach is directly compared to music that is produced using
industry-standard techniques.

2 BACKGROUND
2.1 Adaptive music in games
Music can serve multiple functions in games, and occasionally
serves multiple functions simultaneously. Winifred Phillips de-
scribes one function of music in games as acting as an “audience”,
which is described as creating a feeling that the music is “essen-
tially watching the gameplay and commenting periodically on the
successes or failures of the player” [16].

When composingmusic to act as an audience, there is an inherent
mismatch in the relationship that games and music have with time.
Games are interactive, and react to the actions and events of one

or more player or non-player agents. Music is most often linear,
and generally does not react to external changes. Adaptive music
allows for music to be altered based on some control input, such as
player health, number of enemies, or game progress [29].

Adaptive music can be a powerful tool for using music as an
audience, and Phillips describes adaptive music as “constituting the
most complex realization of the music-as-audience approach” [16].
Perhaps the strongest drawback of adaptive music is that it requires
a large amount of time investment, and requires early integration
into the game design to be effective. Compounding these issues is
that music and sound often have fewer resources, lower budgets,
and may be added later in the development process than other game
features [16, 29].

There are two main techniques for creating adaptive music: Hori-
zontal resequencing, and vertical remixing [29]. Music is often read
left-to-right through time, and horizontal resequencing refers to
the adaptive alteration of music through time. In horizontal rese-
quencing, the music generally adapt to game state — musical cues
will loop until certain conditions are met or the game state changes,
a transition is played, and a new musical cue begins looping, match-
ing the new game state.

Instruments in sheet music are vertically aligned, and vertical
remixing refers to the adaptive addition or subtraction of audio
stems, depending on the input. When using vertical remixing, the
music generally responds to some variable such as “intensity”, and
adds or subtracts tracks based on a provided mapping. Mass Effect
2 presents a common use of vertical remixing: the music in Mass
Effect 2 adapts based on a measure of combat intensity, adding
additional layers as combat becomes more intense [2].

2.2 Generative music in games
Generative music, also known as procedurally generated music or
algorithmic music, is music that is partially or wholly created by
some form of systemic autonomy [15]. Depending on the specifics
of a particular system, generative music algorithms are capable of
generating music quickly, potentially in real-time, based on a set
of input parameters. Because generative music can produce music
quickly and produce large amounts of music based on the provided
input, it may be used to address the drawbacks to using adaptive
music.

Plut and Pasquier survey uses of generative music in video games
in both the games industry and academic research, and identify
several trends [21]. Primarily, generative music in the games indus-
try is used to extend composed scores in the audio domain, mostly
through stochastically re-arranging musical cues and stems based
on input from the game. In contrast, generative music in academic
research mostly targets the replacement of a composed score with
adaptive music generated and synthesized in real time.

2.2.1 Academic applications. Academic approaches primarily fo-
cus on applying novel generative algorithms to create a general
system capable of real-time, adaptive symbolic music generation.
These systems commonly use generative music instead of composed
music, with the musical adaptivity most often based on an affective
model of player experience. These affective models generally map
a set of game variables to one or more affective dimensions. Aca-
demic systems are often empirically evaluated, and the evaluation
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is often focused on whether the generated music is perceived as
expressing similar affect to the game.

Plans and Morelli create a system that generates music for the
MarioAI Championship engine, a game used in procedural level
generation research [17]. Plans andMorelli describe an “excitement”
metric based on aggregate counts of game events and variables, and
map several musical features to the excitement metric. A harmonic
sequence are generated by a genetic algorithm design, using notes
from the C major scale or a subset of notes from the C major scale.
Additionally, a melody is created, first by creating set of phrases are
generated by applying minor transformations to a smaller set of
composed phrases, and then combining a sequence of these phrases
into a melody. The music is synthesized by the “SawLPFInstRT2”
instrument, from the Jmusic library [3].

Plans and Morelli evaluate their system by comparing results
from the generative system to a precomposed linear MIDI track.
Plans and Morelli collect the output of their affect model from
playthroughs, and ask player-participants to rate a level of enjoy-
ment after playing. While the gameplay-derived frustration value
was on average lower when utilizing generative music, other mea-
sures, including self-reported enjoyment, are consistent between
the two conditions.

Prechtl presents a system that uses weighted Markov models to
generate real-time chord progressions, which can be played by a
single loaded VST instrument. The chords are played both as a block
chord and an arpeggio, and the chord contents are selected base on
an input “tension” value. Prechtl also presents a horror-genre game
Escape Point, created to implement and evaluate the generative
system. Prechtl maps a tension value to the distance between the
player and the nearest mobile object (mob) while navigating a maze.
Mobs follow a pre-determined path, and if the player comes into
contact with a mob, they lose the game.

Prechtl evaluates his system, and finds that the adaptive gen-
erative score invoked more tension and excitement based on skin
conductance. After playing Escape Point, participants report per-
ceiving more tension and excitement with the adaptive generative
score than with linear generative music or no music [24]. Partici-
pants who like the horror genre prefer the generative score to the
linear score or no music, and find the game more fun to play with
the generative score. However, all three conditions are evaluated
as roughly equal in preference and fun ratings among participants
who do not like the horror genre.

Scirea presents Metacompose, which uses hybrid evolutionary
techniques to generate music [27]. Metacompose generates a chord
progression, and evolves a melody based on that chord progression.
Metacompose then realizes the chord progression into an accom-
paniment in the form of a block or arpeggiated chord. The music
generation responds to input values for the dimensions of valence
and arousal.

Scirea implements and evaluates Metacompose in the game of
checkers, synthesized via a solo piano. A valence value is deter-
mined by evaluating “how good the current board configuration
is for the human-player”, and an arousal value is determined by
evaluating the range of evaluations for possible moves, described as
reflecting the sentiment “How much is at stake for the next move?”.
Metacompose outperformed randommusic and non-adaptive music
in an empirical user preference study.

Williams et al. present an “affectively-driven algorithmic compo-
sition” system that primarily uses Markov generation with post-hoc
transformations for affective expression [31]. While this system is
capable of real-time generation, generated sequences were rendered
into audio files, played on a solo piano, for the evaluation.

To evaluate their generative system, Williams et al. select a spe-
cific in-game section of the MMO World of Warcraft. Situations
that occur within the section are manually tagged with affective
targets, and the music system selects generated clips to match the
affective target. Williams et al.’s system outperforms both the com-
posed score and silence in user ratings of “emotional congruence”,
in gameplay, and outperforms silence in user ratings of immersion.
However, the generated score shows a “marked decrease” in user
ratings of immersion compared to the composed score.

2.2.2 Industry applications. Industry applications of generative
music most commonly sequence composed and pre-rendered or
recorded audio stems together in new ways. Mick Gordon describes
an example of using generative music to extend horizontal rese-
quencing in DOOM (2016) [25]. Gordon assigns fully arranged clips
into “buckets”, that generally follow a structure such as “verse”, “cho-
rus”, and “bridge”. During gameplay, while certain conditions are
met, the system continuously randomly selects clips from within a
bucket. When conditions change, the system plays a transition as in
typical horizontal resequencing, and then being playing randomly
selected clips from the new bucket.

Red Dead Redemption makes aggressive use of generative mu-
sic addressing the arrangement task [26] — in RDR, all music is
written at 130 beats per minute, in the key of a minor. The music
in RDR is divided into orchestral function e.g. “melody” or “bass”,
and associated game states e.g. “riding horse” or “combat”. When
the game state changes, the generative system in RDR selects a set
of instruments/functions, and randomly selects a loop for each se-
lected instrument. Additionally, the system adds or removes layers
based on game variables within some situations, using elements of
both horizontal resequencing and vertical remixing.

2.3 PreGLAM
As mentioned in Section 2.2.1, the most common application of
generative music in games uses an affect-based model of player
experience to influence the adaptivity of the generative score. The
adaptivity of our score is influenced by the Predictive Gameplay-
based Layered Affect Model, or PreGLAM [22]. PreGLAM is a cog-
nitive agent that models a spectator with a provided bias. In our
implementation, we use PreGLAM to model an audience who is
biased in favour of the player to create music that affectively com-
ments on the successes and failures of the player.

PreGLAM is a layered, gameplay-based affect model, based on
NPC models of affect [1, 6]. A base mood value is provided to
PreGLAM that represents a general, environmental affective feel-
ing. PreGLAM models emotions as the responses to emotionally
evocative game events (EEGEs). EEGEs have a provided base emo-
tion value, a set of intensity modifier variables, and a time scalar.
PreGLAM calculates an output affect value for each dimension
based on the provided mood value, as well as the summed emo-
tional responses to EEGEs, modified by their intensity modifier
variables and time scalar.
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Figure 1: A possible flank in XCOM

PreGLAMmodels EEGEs that occur in the game, and also models
emotional responses to prospective EEGEs. Prospective events are
events that PreGLAM expects to happen, given the current state of
the game. One example of how we model prospective events can
be seen in Figure 1, which shows a scenario from XCOM: Enemy
Within. In Figure 1, the player’s selected unit is able to flank an
opposing unit. The opposing unit is otherwise in cover, which gives
it a tactical advantage that can be removed when flanked. Because
the gameplay in XCOM primarily involves manipulating tactical
positioning in relation to cover, we can predict that the player will
move their unit into a flanking position and attack the opposing
unit. Importantly, PreGLAM models that a spectator emotionally
perceives the possibility of a flank even if the player does not take
the predicted action — the prospect of the flank is not affected by
whether or not it is realized.

PreGLAM is integrated into the game Galactic Defense (GalDef),
which will be further described in Section 2.5. PreGLAM’s applica-
tion in GalDef is based on informal experiential playtesting, with all
EEGEs, mood values, and conditions for predicting EEGEs created
during the design process. We assign threshold values for 5 levels
of each dimension, which influences the adaptivity of our musical
score.

2.4 IsoVAT Composition guide
Plut et al.’s IsoVAT composition guide presents a set of Western
musical features, and the perceived changes in emotional expression
that changes in these musical features are associated with [23]. This
guide is aggregated from a broad overview of research in music and
emotion. The IsoVAT guide represents emotion using a Valence-
Arousal-Tension model, and is intended to be used across Western
pop, jazz, and classical genres. For example, increases in the melodic
range, contour, and direction are strongly associated with increases
in arousal, while decreases in harmonic consonance are strongly
associated with increases in tension.

The IsoVAT composition guide is empirically evaluated by pro-
ducing a corpus of clips that express varying levels of valence,
arousal, or tension. These clips are organized by the affective di-
mension that they manipulate, and further divided into sets of 3.
Each set shares an instrumentation and genre, and is composed to
express a low, medium, and high level of the assigned emotional
dimension.

2.5 Galactic Defense
Plut et al. integrate PreGLAM into a custom video game, Galactic
Defense (GalDef ) 1, designed for use in game emotion and percep-
tion research [22]. This follows a common approach in research and
emotion [9, 10, 13, 24], and is further described in the PreGLAM
paper [22]. We implement and evaluate our use of generative music
in games using GalDef. Figure 2 provides an annotated screenshot
of gameplay. We integrate our adaptive scores into GalDef, using
PreGLAM’s output to control the adaptivity. GalDef also serves as
an environment for evaluating our application of generative music.

GalDef is an action-RPG game, where the player uses a set
of abilities to defeat a series of opposing units in real-time. The
abilities that the player has access to have situational strengths and
weaknesses, with the intent of encouraging moments of gameplay
where the player is appraising the current game state, and using
that appraisal to make choices about their next move. The player
must manage a small, recharging limited resource pool for both
themselves and the opponent, and must take care not to use certain
abilities while under threat of attack.

The player controls a spaceship in Galactic Defense, and must
defeat several opposing AI-controlled spaceships to win the game.
The player has four moves, which are shown in Figure 2. In terms
of resources, the player has a weak shield that constantly recharges,
and a pool of health points. When the player uses any ability, the
shield is temporarily deactivated, and therefore any incoming attack
will directly drain health points. All opponents have the moves of
attack pattern, heavy laser, and repair.

Both the heavy laser and repair abilities are interruptible when
used by the player. If the player receives any damage while using
these abilities, the damage will be multiplied and the ability will be
cancelled. Most of the gameplay in GalDef is in tactical decisions of
when to use each of the four moves. The basic attack pattern does
small but consistent damage, the heavy laser deals large damage in
some situations, but is vulnerable to counterplay. The “absorbitive
reactor” parry ability is extremely powerful, but requires precise
timing and is purely situational. Self-repair is often necessary, but
as with the heavy laser, the player is vulnerable while using it.
This design provides fluid gameplay and highlights the contextual
nature of game emotions.

2.6 PreGLAM implementation
Figure 3 shows how PreGLAM appraises game data to select music,
based on a perceived valence, arousal, and tension, acting as an
audience.

Mood values are provided to PreGLAM based on the designed
difficulty levels of each gameplay segment. Each gameplay segment
involves 2-3 combat encounters, which rise in difficulty as the
game progresses. We model PreGLAM with a desire of the player
winning, and derive a set of EEGEs, shown in Table 1. In Table 1,
we abbreviate “Player” to “P”, and “Opponent” to “O”. These EEGEs
are created through an iterative process of playtesting with a focus
on informal evaluation of experienced emotions.

Table 1 gives the base assigned value for the associated emotional
perception of each event. These values are based on an initial unit
of 1, and values represent the intensity of the emotional response
1GalDef is available at GitHub (https://tinyurl.com/75mfvw92)

https://anonymous.4open.science/r/Galactic_Defense-2878
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Attack Pattern

Begins firing main weapon

Fire rate increases over time

Heavy laser

After small delay, fire heavy laser

Deals reduced damage to shields

Repair

After small delay, heal self

Restore % of missing health

Absorbitive reactor

Use when opponent is about to use laser (right)

If timed correctly, fires return shot and disables

opponent’s shields

Health

If it reaches 0, you lose the game

Shield

Automatically regenerates

Lowers when attacking

Protects health

Opponent

Beat them all to win the game

Opp. Health

If it reaches 0, you win the fight

Opp. Shield

Automatically regenerates

Lowers when attacking

Protects health

Figure 2: Visual tutorial for Galactic Defense

to the EEGE. We represent all intensity modifiers as percentages,
which scale the emotional values between 100 and 200%. Tension
values are only computed for prospective events, as tension arises
from the prospect of events [14]. As an example, the “Player shield
down” EEGE has a base value of -2 valence, 1 arousal, and 2 tension.
These values are modified based on howmuch health the player has
remaining — losing the shield is more of a problem if the player’s
health is also low. If the player has, e.g. 50% of their maximum
health and is expected to lose their shield, output values will scale
to 150% of their base value, and the output values at the moment
that the shields are expected to go down are 3 valence, 1.5 arousal,
and 3 tension. We note that during actual gameplay, these values
are additionally scaled through time. As mentioned, PreGLAM is
further described in a separate paper [22].

Table 1: Emotionally evocative events in GalDef

Event Valence Arousal Tension Modifiers

P. complete atk combo 1 1 1 Missing O. shield
P. heavy atk 1 1 1 Missing O. health
O. atk combo 1 1 1 Missing P. shield
O. heavy atk -2 1 2 Missing P. health, Parry active
P. shields down -2 1 2 Missing P. health
O. shields down 2 1 2 Missing O. health
P. exploit O. disable 3 1 2 Missing O. health
P. death -3 1 3 P. shield recharge time
O. death 3 1 3 O. shield recharge time
P. heal 2 1 2 Missing P. health
O. heal -2 1 2 Missing O. health

3 MUSICAL SCORES
3.1 Linear score
We compose a linear score that attempts to create moments of
“serendipitous sync” [29], where a linear score that is written with

changes in emotion over time occasionally synchronize with the
changing emotions of gameplay. This score is musically based on
the adaptive score, and mostly consists of manually re-arranged
tracks and sections of tracks from the adaptive score. We arrange
the musical ideas from the adaptive score into a linear score that
has varying rises and falls in valence, arousal, and tension. The
approximate levels of each dimension through the linear score’s
128 bars is shown in Figure 4. As we expect the gameplay of GalDef
to also demonstrate moments of rising and falling valence, arousal
and tension, we expect that there may be moments where the linear
music aligns with the GalDef’s perceived emotion. The linear score
is available to listen on SoundCloud [18].

3.2 Adaptive score
We compose our affectively adaptive score following the IsoVAT
composition guide [23], as described in Section 2.4. The IsoVAT
guide provides an ordinal description of howmusical features affect
emotional perception, and we use the guide to create clips that
express three levels of each dimension: low, medium, and high.
While the IsoVAT corpus adjusts music along individual dimensions,
we use the guide to compose a 3-dimensional adaptive score, that
can express any combination of 3 levels of 3 affective dimensions.
Therefore, we compose 33, or 27 clips.

Each clip is at a tempo of 130 beats per minute. Each clip has
5 tracks, and is composed for the same instrumentation, divided
into “melody” and “rhythm/harmony” sections, as shown in Table 2.
Table 2 also provides the VST instrument used for each instrument.
We note that the guitar part alternates between using a distorted
electric effect and using an acoustic guitar, and the two guitar parts
share a track. We also note that while piano is often considered a
rhythm section instrument, we use piano as a melody instrument

https://soundcloud.com/user-587475226/linear_score/
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Player loop Audience perception PreGLAM model

Galactic Defense gameplay

Game visuals and audio Game data

Player

Appraises input
Appraises input Appraises input

Perceived emotion Perceived emotion

Select 
action

Audience

Modeled emotion

Input 
controls

PreGLAM

Figure 3: Diagram showing how PreGLAM-MMM fits into game loop

in our adaptive score. The use of VST instruments will be further
discussed in Section 3.4.

We expand our 3 levels of adaptivity into 5, adding medium-low
and medium-high levels via adaptive re-sequencing. These levels
are differentiated by instrument section — only the melody section
adapts to medium-low andmedium-high levels. The rhythm section,
in contrast, only adapts to levels of low, medium, and high. Section
levels are independently set, so when transitioning from a high or
low level to a medium-high/low level, the rhythm section contin-
ues to play the high/low clips until the corresponding dimension
reaches a medium level. This further expands our adaptivity from 5
to 7 possible output levels for each dimension: low, low→medium,
medium→low, medium, medium→high, high→medium, and high,

creating a total of 73 = 343 unique arrangements. Due to the inter-
active nature of our adaptive and generative scores, we implement
a “Music explorer” in GalDef, where users can freely navigate the
emotion space of the score outside of the gameplay.

In terms of harmonies, the keys/modes used in the clips are:

(1) b minor/aeolian, primarily used for low valence
(2) D Major/Ionian, primarily used for high valence
(3) G Lydian, primarily used for high valence with high tension

These keys and modes share a key signature, and therefore the adap-
tive score can theoretically navigate the harmonic space without
jarring transitions.
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Figure 4: Affective levels by bar in the linear score

Table 2: Instrumentation of Galactic Defense score

Instrument Section VST bank VST instrument VST source

Bass Rhythm Analog Essentials 80ties Dance Applied Acoustic Systems
Drums Rhythm LABS Drums Spitfire Audio
Strings Rhythm BBC Symphony Orchestra Violas Spitfire Audio
E. Piano Melody Lounge Lizard Session Bite Applied Acoustic Systems
Guitar (Electric)* Melody Strum Session Ballistic Squeeze Applied Acoustic Systems
Guitar (Acoustic)* Melody Strum Session Dreadnought Smooth Applied Acoustic Systems

Table 3: MMM Generation parameters

Parameter Tracks per step Bars per step Shuffle Percentage Temperature Model size

Value 1 4 True 90% 1.0 8-bar

3.3 Generative score
Weutilize Ens and Pasquier’sMMM 8-bar transformermodel, which
generates symbolic multi-track music [5], using the parameter set-
tings in Table 3. While MMM has a host of features, we primarily
use Bar inpainting. Bar inpainting involves resampling a subset
of the bars present in one or more tracks, or altering a subset of
musical material conditioned on the remaining unaltered musical
material.

As mentioned in Section 3.2, our score is composed as a set
of 8-bar clips, and the instrumentation is separated into sections.
Because the melody and rhythm sections adapt as groups, we con-
dition the generation of new melody bars on existing rhythm bars,
and the generation of new rhythm bars on existing melody bars.
We create 3 additional variations per section, for each of the 27
clips in our adaptive score. When the music adapts, we randomly
select from the 4 possible variations (1 composed and 3 gener-
ated) independently for each instrument. This creates a total of
3434 = 13, 841, 287, 201 unique arrangements.

The MMM model is currently too heavy and slow to generate
music in real-time. However, we believe that the amount of genera-
tive musical content is indistinguishable from real-time generated
music during gameplay in terms of musical variety. By utilizing
offline generation, we are able to increase the audio quality over pre-
vious real-time uses of symbolic generative music. As technology
improves, we believe that our approach could implement real-time
generation.

3.4 Synthesis and Arrangement
Video game composers commonly use libraries of virtual instru-
ments to provide some or all of the synthesis of their music [16].
These virtual instruments are generally controlled via MIDI, and
input can be recorded on MIDI controllers and/or manually ad-
justed. As our score is in MIDI format, we use VST instruments to
synthesize both our composed and generative score.

For our composed scores, we record data from a MIDI keyboard
directly into Ableton Live, a common digital audio workstation
(DAW). We primarily use VST sources from Spitfire audio’s LABS
libraries [8] and libraries from Applied Acoustic Systems [30]. We
record the performance at 1/2 speed, played on a MIDI keyboard
- this ensures precision in following the composed score while
allowing for human articulation and velocity data.

Each instrument part has 27 unique levels, encompassing the
VAT space that the adaptive composition expresses in total. As
mentioned in Section 2.3, we label thresholds for PreGLAM’s out-
put to trigger a corresponding categorical level of each emotional
dimension. We use “smart transitions” in Elias, which attempts to
transition individual parts only during silence based on an analy-
sis of the audio file. This creates transitions that somewhat more
resemble transitions using symbolic notation instead of rendered
audios, as there is some musical consideration for the timing of the
transitions.

4 EMPIRICAL EVALUATION
4.1 Empirical Methodology
To evaluate our application of generative music in video games, we
collect real-time user annotations from 48 video spectators. Our
annotation software is available on GitHub [19], and is similar to
RankTrace [11] and PAGAN [12]. Our annotation interface is shown
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Figure 5: Screenshot of participant annotation interface

Table 4: Empirical study conditions

Condition Music Source Adaptivity Relevant Section

No music None N/A N/A
Linear score Composed Linear 3.1
Adaptive score Composed Adaptive 3.2
Generative score Generative Adaptive 3.3

in Figure 5. While watching a video of gameplay, user can press
the up or down arrows to indicate an emotional change. As with
RankTrace and PAGAN, unbounded input is collected every 250
ms, and the user is provided a visual graph of their annotation so
far.

We create 20 videos of Galactic Defense gameplay. Each video is
≈ 3−4 minutes in length, and we select clips that have clear changes
to their emotional expression, particularly within a single affective
dimension, based both on PreGLAMs output during the video and
our informal evaluation. Each video has an accompanying output
file generated by PreGLAM. We divide these videos into 4 sets of 10,
based on the source and adaptivity of the musical accompaniment,
as shown in Table 4.

Prior to annotating video, participants familiarize themselves
with the gameplay of GalDef. Figure 2 shows an image tutorial, and
a video tutorial is available for them to watch [20]. Participants are
given 25 minutes to familiarize themselves with GalDef. During this
25 minutes, after downloading and completing the tutorials for the
game, players freely play GalDef. After the 25 minutes, participants
begin the annotation tasks.

Each participant completes one annotation curve per condition
per video, annotating a single affective dimension, for a total of
four annotation curves per participant. After completing their an-
notation, participants are presented with the four videos that they
provided annotations for. They are then asked to select one video
for each of the following questions:

(1) In which video do you feel the music most closely matches
the events and actions of the gameplay? (gameplay match)

Table 5: Results by musical condition and dimension

Measure Model Result None Linear Adaptive Generative Valence Arousal Tension

DTW
PreGLAM Distance 16.30 19.48 17.84 19.33 22.52 13.52 17.39

SEM 1.05 1.48 1.20 1.44 1.19 1.20 0.71

Random walk Distance 24.20 25.63 25.44 25.64 27.53 24.61 25.71
SEM 1.60 1.95 1.80 1.96 1.46 2.00 1.30

RMSE
PreGLAM RMSE 1.06 1.04 0.99 1.07 1.23 0.73 1.08

SEM 0.06 0.06 0.05 0.06 0.04 0.05 0.04

Random walk RMSE 1.34 1.38 1.35 1.38 1.36 1.28 1.41
SEM 0.05 0.06 0.06 0.06 0.04 0.06 0.04

(2) In which video do you feel that the music most closely
matches the emotion that you perceive from the gameplay?
(emotion match)

(3) In which video did you feel most immersed in the gameplay?
(immersion)

(4) Which video’s music did you enjoy the most? (preference)

4.2 Results
48 participants take part in our study. Of these, 23 use he/him
pronouns, and 25 use she/her. 55% of participants report playing
between 0-4 hours of games per week, and the average age of
participants is 23.60 years old. 39 participants are recruited from
undergraduate students at (institution withheld for anonymous
review), 4 participants are recruited via email and message boards,
and 5 participants are recruited using Amazon’s Mechanical Turk
platform. For all participants, the study is identical.

We analyze our results using Dynamic Time Warping (DTW),
with the dtw-python library [7], and calculate the Root Mean
Squared Error (RMSE) based on z-score scaling. Table 5 shows
these values, and Figure 6 shows the DTW Distance and 95% confi-
dence interval. DTW is a measurement of similarity between two
time series that may vary in speed. RMSE is a commonly used mea-
sure of the similarity between predicted and actual values. These
measures provide both a measure of contour similarity with DTW,
and overall similarity with RMSE.

In Table 5, the responses for musical condition are aggregated
across affective dimension, and the dimension responses are aggre-
gated across conditions. In other words, the DTWDistance between
PreGLAM and the ground-truth annotations for the “linear” condi-
tion represents the combined average distance of valence, arousal,
and tension annotations when the linear score is played.

Each participant’s annotation curve is compared directly to
PreGLAM’s output annotation. Additionally, we provide a more
absolute measure by comparing each participant’s annotation curve
to a random walk time series. These results therefore demonstrate
the distance measures between PreGLAM and ground-truth annota-
tions, in comparison to the distance measures between the random
walk and the ground-truth annotations.

We test the assumption of normality, and find that the data is
normally distributed in all four measures. We perform a t-test to
compare results and find significant difference between PreGLAM
and random walk compared to user annotations, p < 0.01 for
both metrics. We perform post-hoc two-way t-tests separated by
condition and dimension. Results of these t-tests are shown in
Table 6

PreGLAM significantly outperforms the random walk in both
DTW-Distance and RMSE across all conditions. We perform an
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Figure 6: DTW-Distance betweenPreGLAMand annotations,
compared with Distance between random walk and annota-
tions

Table 6: T-test results by musical condition and dimension

Measure None Linear Adaptive Generative Valence Arousal Tension

Dtw-Distance p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.08 p < 0.01 p < 0.01
RMSE p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.09 p < 0.01 p < 0.01

ANOVA across all conditions, and find no significant effects from
changes in musical condition. Separated by dimension, PreGLAM
significantly outperforms the random walk for arousal and ten-
sion, but does not significantly outperform the random walk for
valence measures. We perform an ANOVA across all dimensions,
and find that the three dimensions are significantly differentiated
from another. Post-hoc Tukey tests show that all pairwise com-
parisons of dimensions are also significantly different — modeled

arousal is significantly more accurate than modeled tension, which
is significantly more accurate than modeled valence.

Figure 7 shows the distribution of questionnaire responses. In
these responses, the composed linear score is rated as the highest
in all questions. In terms of emotional congruency, immersion, and
preference, the generative score is rated as a close second, with
the composed adaptive score in a more distance third. In terms
of matching the events and actions of the gameplay, the adaptive
score slightly outperforms the generative score.

Gameplay Emotion Immersion Preference

10%

20%

30%

40%
None
Linear

Adaptive
Generative

Figure 7: Distribution of questionnaire responses

4.3 Discussion
Overall, PreGLAM presents a viable emotion model for control-
ling adaptive music, outperforming a random walk in matching
ground-truth annotations. There is a marginal increase in the dis-
tance between PreGLAM’s ouput and user annotations when any
music is introduced. Within the musical conditions, the distance is
lowest with composed adaptive music, and highest with the com-
posed linear score. We did not find significant differences between
the distances between PreGLAM and ground-truth annotations
when separated by the musical condition. In other words, the musi-
cal conditions are not significantly differentiated from each other
according to real-time perceived ground-truth annotations.

The post-hoc questionnaire questions indicate support for the
generative approach. As mentioned in Section 2, Williams et al. find
that participants report a decreased immersion when playing with
a single-instrument MIDI track, compared to an original orches-
tral score. We address this by using identical production processes
across our three musical conditions, therefore isolating the compo-
sitional element of the musical generation. Participants judge the
generative score slightly lower than the linear score in all questions,
but generally much higher than the composed adaptive score. The
composed adaptive score outperforms the generative score in terms
of matching the actions and events of gameplay, but the genera-
tive adaptive score presents an increase in participant ranking for
perceived emotional congruency, immersion, and preference.

The linear score is the only score that has composed transitions.
While the linear score does not adapt its emotional expression
based on gameplay, it does have rising and falling emotional arcs
through time, andmay produce serendipitous sync [16]. InWilliams’
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previous research, the generative affective score is compared with
a linear score that has a mostly consistent emotional expression.
While Williams’ generative system outperforms their compared
linear score in emotional congruency, the linear score outperformed
the generative score in immersion [31].

While our generative score is close in ranking to our linear score,
our linear score outperforms our generative score in all question-
naire responses. This may seem to show a step backwards from
the work presented by Williams et al. [31]. We draw attention to
several differences that may explain some of this discrepancy. Our
emotional model adapts in response to the actions and events of
gameplay in real-time, rather than associating each emotion with
a single game state. Our linear musical score changes in emotion
over time, rather than expressing a mostly static affect. Additionally,
our linear, generative, and adaptive scores are synthesized using
identical production techniques, bringing musical features such
as instrumentation, timbre, tempo, genre, synthesis, and produc-
tion quality to parity with the generative music. We believe that
this provides a more isolated understanding of the compositional
aspects of the generative score.

A linear score may be preferred by listeners due to the smooth-
ness of transitions, and the pre-determined intentionality of its
emotional expression. Contrastingly, our composed adaptive score
has a limited amount of musical content for each adaptive level
compared to the generative score, which may lead to the musical
transition point between adaptive levels in the composed score
being jarring and/or repetitive. While the application of genera-
tive music does not bring an adaptive score to full parity with a
composed linear score in post-hoc participant responses, the gener-
ative score improves upon our adaptive score and upon previous
applications of generative music in games.

Overall, these results indicate that while the real-time perceived
effects of musical accompaniment to gameplay shown in Table 5
and Figure 6 are small, our approach to generative music is mostly
comparable to linear music in terms of the emotional congruency,
immersion, and preference in post-hoc responses from participants,
and improves upon these features compared to purely human-
composed adaptive music. This demonstrates the strength of MMM
in assisting a composer to create and extend a highly adaptive score
with generative music.

5 CONCLUSION
We identified several differences between academic approaches to
using generative music in games, and approaches taken from the
games industry. Academic systems tend to use MIDI synthesis of
symbolic generative music, often with a single piano instrument.
Academic systems generally use an emotion model that directly
relates the absolute values of game variables to emotion values for
one or two dimensions. Systems from the game industry generally
use audio recordings of instruments and/or VST instruments to
synthesize and produce the music offline. Industry systems rarely
use an abstracted model of emotion, instead directly relating a set
of game variables to musical adaptivity.

We present a hybrid approach to using generative music in video
games that uses generative composition to extend and expand a
composed adaptive score. This approach attempts to utilize the

advantages of using advanced generative music algorithms within
a score that is aesthetically similar to scores from commercial video
games. We believe that this represents an evaluation of generative
music in games that more closely measures how generative music
may be used in real-world games than previous approaches.

This approach presents a somewhat idealized version of genera-
tive music used in video games, given current technological con-
straints. While our generative score technically produces unique
music that matches gameplay, it does not compose music in real-
time to match gameplay as the MMM algorithm is not currently
capable of real-time generation. Our generative score is generated
using symbolic notation, but tracks are rendered into audio files, as
real-time synthesis cannot currently match the fidelity or comput-
ing performance of offline synthesis.

Our results are consistent with previous approaches to using
generative music in games. While the differences are marginal,
real-time annotations of perceived emotions match our predicted
perceived emotion more with generative and adaptive music than
with the composed linear score. Participants rank our generative
score as on par with our linear score in terms of emotional con-
gruency, immersion, and preference, and far above our composed
adaptive score.

6 FUTUREWORK
In focusing on the aesthetic fidelity of our application of generative
music in games, we do not necessarily exploit the full strength of
generative music. While PreGLAM outputs unbounded floating
point values for Valence, Arousal, and Tension, we use 5 categorical
levels of emotion —We control the adaptivity of the score separately
from the composition in order to use adaptive music techniques
from the industry.

Additionally, we manually design the adaptivity of our score,
and compose a score that has the same 3-dimensional adaptivity
as the generated score. While the use of generative music allows
us to easily and quickly expand the composed adaptive score, the
original composition, and therefore the generated music that is
based on the composition, is still somewhat restricted in expressive
range to allow for relatively smooth musical transitions.

Generative music that is composed and synthesized in real-time
could exhibit more musical flexibility than our composed score, and
could provide more continuous adaptivity. Additionally, generative
music that is composed and synthesized in real-time could have
smoother transitions, as the transitions could be directly generated.

In addition to future work in the technological implementations
of generative music in games, we note that we evaluate generative
music acting as an audience for a single-player action-RPG game.
There are many ways to use music in games, and this application of
generative music may not be suitable for all of them — for example,
Phillips describes the use of music as “branding”, which uniquely
generatedmusic may be very poorly suited to.While we believe that
our application represents a scenario for which generative music
is most well suited, there are many other possible applications of
generative music in video games.
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