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Abstract
We present the Latent Timbre Synthesis, a new audio synthesis method using deep learning. The synthesis method allows

composers and sound designers to interpolate and extrapolate between the timbre of multiple sounds using the latent space

of audio frames. We provide the details of two Variational Autoencoder architectures for the Latent Timbre Synthesis and

compare their advantages and drawbacks. The implementation includes a fully working application with a graphical user

interface, called interpolate_two, which enables practitioners to generate timbres between two audio excerpts of their

selection using interpolation and extrapolation in the latent space of audio frames. Our implementation is open source, and

we aim to improve the accessibility of this technology by providing a guide for users with any technical background. Our

study includes a qualitative analysis where nine composers evaluated the Latent Timbre Synthesis and the interpolate_two

application within their practices.

Keywords Audio synthesis � Neural networks � Signal processing � Computer assisted music composition

1 Introduction

Modern sound synthesizers come loaded with many

parameters, with very large nonlinear, non-modal, search

spaces. This richness comes to the detriment of searcha-

bility as one cannot easily or efficiently find a particular

sound, particular sonic textures, or generate a transition

between two textures. Consequently, sound designers and

musicians most often rely on audio samples (of instru-

ments, sound effects) and their manipulation rather than the

more flexible sound synthesis approach of these sounds and

their sonic surroundings. In previous work on synthesizer

preset generation [35], we demonstrated how, given a

target sample, PresetGen can find a preset that generates

the closest to the sample. In this work, we investigate a new

DL based-method by which a synthesizer model is trained

on selected audio textures, allowing musicians and sound

designers to achieve their synthesis goals by exploring a

sonic space, with interpolation and extrapolation between

sonic textures.

The rise in popularity of deep learning (DL) architec-

tures has led to promising new research using deep learning

(DL) for musical applications, audio transformation and

sound synthesis [2]. The demand for sound synthesizers is

projected to grow at an accelerated rate in the next five

years [39], and in parallel, there is increasing interest in

flexible, versatile, yet controllable synthesis engines. In

addition to improving upon previous models in this area,

Latent Timbre Synthesis (LTS) is a framework for audio

synthesis models that can be used and manipulated by

musicians and composers, by offering a graphical user

interface and intuitive workflow, using fully open-source

software.

In this study, our motivation centers around the apparent

lack of ML-based tools for professional composers and

musicians of Electroacoustic Music, Sound Art, New
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Media, and other interdisciplinary artistic styles that inte-

grate a generalized understanding of sound. We aim to

provide insights into how state-of-the-art ML models can

be integrated into the professional workflows for musical

creation, and whether this integration can foster new cre-

ative ideas. For this reason, our project focuses on the

integration of modern ML and AI techniques into tools for

computer-assisted composition and their applications

within musical practices. LTS helps composers by utilizing

an abstract latent timbre space that is generated by training

unsupervised deep learning (DL) models with a set of

audio recordings. These new DL tools allow composers to

synthesize sounds using a latent space of audio that is

constrained to the timbre space of the audio recordings in

the training set.

The project follows a practical approach that combines

the development of ML-based tools in parallel with musi-

cal creation and subsequent user evaluation with profes-

sional composers and musicians among communities from

the fields of experimental electronic music and sound art.

To limit the scope of the project, we focus specifically on

audio corpus-based sound synthesis approaches that rely on

large libraries of audio excerpts. We encouraged the invi-

ted composers to gain familiarity with and employ our ML-

based tools in the context of a practical musical production

scenario. The user evaluation in Sect. 7 takes the form of

textual interviews that probe the participants experiences

while working with LTS tools and their influence on the

technical, aesthetic, and conceptual aspects of their cre-

ation process.

We hope these project outcomes highlight the benefits

and challenges of integrated state-of-the-art ML algorithms

into the creative ideation and production workflows of

professional composers and musicians.

2 Musical approach

In 1940s, physicist Dennis Gabor proposed [7] that a sound

is composed of acoustical quanta that are bounded by time

and frequency. We are inspired by the idea of acoustical

quanta as well as the definition of music as ‘‘nothing but

organized sound’’ [41] involving sound objects [30] that

situate on multiple layers [33] where any sound can be used

to produce music [19, 41], and strong connections exist

between pitch, noise, timbre, and rhythm [28, 29, 32, 33].

In that sense, the Latent Timbre Synthesis project builds on

our previous work titled Musical Agents based on Self-

Organizing Maps (MASOM) [36, 38]. MASOM combines

organizing sound samples in latent audio space with sta-

tistical sequence models for musical structure. The latent

audio space in MASOM is generated by a Self-Organizing

Map that organizes a set of audio excerpts.

In LTS, we move further by aiming for an audio syn-

thesis framework where we can synthesize sounds that do

not exist in the training set. Unsupervised DL architectures

have the flexibility of meta-creativity where practitioners

can create their own personalized audio synthesizers by

curating the training dataset of DL frameworks. LTS tools

for music composition and sound design utilize an abstract

latent timbre space that is generated by training unsuper-

vised DL models on a set of audio recordings. These new

DL tools can help practitioners in computer-assisted com-

position by synthesizing from a latent space of timbre that

is constrained to the timbre space of the audio recordings in

the training set.

Following the research motivation and musical approach

outlined above, our contributions presented in this paper

include two Variational Auto-encoders (VAEs) to generate

a latent space of audio frames. Unlike other deep learning

architectures such as Generative Adversarial Networks

(GANs), VAEs are beneficial for our applications because

these architectures can encode an existing audio frame to a

latent space, as well as synthesize audio frames from latent

vectors. VAEs also allow audio synthesis through inter-

polation and extrapolation of timbres, by using the latent

vectors of audio frames.

Latent Timbre Synthesis differs from the previous works

such as Granma MagNet [1] because we prioritize the

flexibility of variable length audio generation, in compar-

ison with sound samples of fixed-duration. We think that

the flexibility of changing the duration of the generated

audio is crucial for our applications, which stands out as

another contribution of LTS. Our approach focuses on

creating a latent space of audio frames, where we can

represent an audio recording with any length as a time-

series sequence of latent vectors.

The LTS framework consists of three main modules,

calculation of wavelet transform-based spectrogram rep-

resentation, latent audio frame space generation using two

specific Variational Auto-encoders and inverse synthesis

using wavelet-based magnitude spectrogram generated by

the decoder of the VAE. We explain an iterative design of

two VAE architectures to create an audio synthesis tool for

composition practices and sound design applications. In

addition, we present and share a fully working application,

called interpolate_two with a Graphical User Interface

(GUI) that allows composers to synthesize audio using

timbre interpolation and extrapolation with multiple

sounds. In comparison with the high computational com-
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plexity of previous works mentioned in Sect. 3, the low

computational complexity of interpolate_two allows the

incorporation of the musical tool within real-time appli-

cations. The documentation of the setup of interpolate_two

is detailed to guide practitioners of all backgrounds. Our

implementation is open source1, and sound examples are

available2. We encourage our readers to dive into the code

and experiment with the framework for further audio

synthesis possibilities.

3 Related works

We limit this section to the previous works that utilize

audio spectrogram as an input for the deep learning

architecture, with the exception of WaveNet. We situate

the Latent Timbre Synthesis project within the raw-audio

generation applications of deep learning, and WaveNet is

one of the state-of-the-art systems in the area. We also omit

deep learning systems for speech synthesis or vocoder

applications, such as MelGAN [16], while mentioning in

Sect. 8 how we plan to incorporate them in LTS as a next

step of our research.

WaveNet is a deep learning architecture that uses an

audio corpus for the tasks of music composition, multi-

speaker speech and text to speech generation, and speech

recognition [25]. WaveNet applies Convolutional Neural

Networks (CNNs) with two strategies to handle temporality

of raw audio data: causal convolution and dilation. Causal

convolutions ensure that the output only depends on the

past observations. Dilated convolutions skip a number of

inputs on each layer. The number of skipped inputs

increases exponentially with each layer; hence, the recep-

tive field of the network also increases exponentially [43].

Oord et al. [25] tested WaveNet on two audio corpora: the

MagnaTagATune dataset and the YouTube piano dataset.

The authors point out that ‘‘Even with a receptive field of

several seconds, the models did not enforce long-range

consistency which resulted in second-to-second variations

in genre, instrumentation, volume and sound quality.’’ That

is, WaveNet struggled to generate long-term variations like

in the case of interactive music systems that apply Markov

Models [37, Sect. 6.1]. There has been follow-up research

on the WaveNet architecture, where the authors stack

multiple WaveNet architectures on top of each other [26],

or they combine WaveNet with Vector Quantized Varia-

tional Autoencoders [4]. The main drawback of all

WaveNet systems is their computational complexity and

high usage of GPU memory [3]. The technology require-

ments of WaveNet limit its usefulness in compositional

practices, where composers do not necessarily have access

to computers equipped with state-of-the-art GPUs.

Differentiable Digital Signal Processing (DDSP) is a

toolbox made by Google for research into Digital Signal

Processing (DSP) applications of deep learning [5]. The

authors describe the DDSP Autoencoder, which is a VAE

architecture where the inputs are the Mel-Frequency Cep-

stral Coefficients (MFCCs) of an audio excerpt. We men-

tion a comparison of using MFCCs and other audio

features as the representation of timbre for audio synthesis

with VAEs in Sect. 4.1. The architecture employs three

autoencoders for fundamental frequency (f-encoder),

loudness (l-encoder), and the latent space of timbre (z-

encoder). The fundamental frequency and the loudness

encoders use the CREPE architecture that is originally

presented as a pitch detector [10]. The z-encoder archi-

tecture is inspired by the ResNet architecture in Computer

Vision research [11]. The decoder, on the other hand,

controls the input parameters of an additive synthesis

module, a subtractive synthesis module, and a reverb.

These three synthesis modules generate the final audio. The

loss function compares the generated audio with the orig-

inal one, using a specific function called Multi-Scale

Spectrogram Loss, which is similar to comparing the

spectrograms of original and generated audio.

The Generative Timbre Spaces project [6] is perhaps one

of the most similar previous studies to the Latent Timbre

Synthesis project. The application of Generative Timbre

Synthesis focuses on generating a latent timbre space of

conventional musical instruments. This model uses a VAE

where the encoder is a 3-layer feed-forward network with

2000 units in each layer. The latent space has 64 dimensions.

The authors introduce a new regularization item in the cost

function. The additional regularization loss tries to force the

network to satisfy perceptual similarity ratings of conven-

tional musical instruments in Western Classical Music. These

perceptual ratings are proposed in previous studies

[8, 12, 15, 17, 21]. The training dataset of Generative Timbre

Spaces consists of audio recordings of conventional musical

instruments where each file is an instrument playing a note.

The authors takes one frame from each audio file to train the

VAE model. Hence, the architecture aims to capture the

generalized timbre of a conventional musical instrument

instead of the regeneration of an arbitrary audio excerpt. As

further limitation, the cost function is not suitable to regen-

erate a dataset with arbitrary audio recordings because there

are no perceptual ratings available. We further discuss the

issues related to the hyper-parameters of VAE in Generative

Timbre Spaces in Sect. 4.2.

The DDSP Autoencoder and Generative Timbre Spaces

aim for the synthesis of conventional music where the

1 The source code is available at https://www.gitlab.com/ktatar/

latent-timbre-synthesis.
2 We provide sound examples at https://kivanctatar.com/Latent-

Timbre-Synthesis.
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model is conditioned to output audio with a fundamental

frequency constraint. In sound design, experimental elec-

tronic music, and sound art applications, having a funda-

mental frequency of a sound gesture is rather limiting. The

music theory of contemporary electronic music emphasizes

the continuum between noise, pitch, and rhythm

[19, 28, 29, 32, 33]. Hence, in LTS, we aim for an audio

synthesizer where composers and practitioners are free to

explore the full potential of digital audio synthesis.

4 Audio synthesis framework

The Latent Timbre Synthesis framework consists of three

main parts, spectrogram calculation using a specific type of

wavelet transform, audio frame latent space generation

using Variational Autoencoders, and inverse synthesis of

audio using the magnitude spectrogram generated by the

decoder of VAE (Fig. 1).

4.1 Wavelet transform-based spectrograms

The audio feature extraction module generates spectrogram

vectors using Constant-Q Transform (CQT) [31] that has

gained popularity in Music Information Retrieval (MIR)

research in the recent years. CQT3, and its variant, the Non-

stationary Gabor Transform (NSGT) [42], have been com-

pared to the other audio features such as Mel-Frequency

Cepstral Coefficients (MFCC); and previous studies showed

that CQT and NSGT could perform better in MIR applica-

tions such as segmentation and musical structure analysis

[24]. Naturally, segmentation and musical structure analysis

tasks require computing the audio similarity [23]; thus, they

are suited to create a latent space of audio frames.

A previous work [6] compared spectrograms computed

with fixed windows and wavelet transform-based spectro-

grams for applications of latent audio frame space gener-

ation using deep learning (DL). This comparison included

Short-Time Fourier Transform, Discrete Cosine Transform,

Constant-Q Transform (CQT), and Non-Stationary Gabor

Transform (NSGT) variations using different frequency

scales. The wavelet-based transforms in this previous study

were CQT and NSGT variants. The authors found that

wavelet transform-based spectrogram representations per-

form better than the spectrograms calculated using fixed-

length windows with regard to the log-likelihood and mean

quality of the audio frame reconstructions, as shown in

Table 1, while the audio frame reconstructions of wavelet

transform-based spectrograms gave similar results. We

utilize CQT in comparison with other wavelet-based

spectrograms in Table 1 because a python library for audio

analysis, titled Librosa4 [22], includes a CQT and inverse

CQT implementation [31] combined with a Fast-Griffin-

Lim phase estimation [27] that we explain in Sect. 4.3.

4.2 Autoencoders and Variational Autoencoders

Autoencoders are deep learning architectures for genera-

tive modelling. The architecture consists of two main

modules: an encoder and a decoder (Figs. 1 and 2). The

encoder maps the input data x 2 RL to a latent vector z 2
RM where z ¼ encoderðxÞ, and M\L. The decoder aims to

convert a latent vector back to the original data, and ide-

ally, decoderðencoderðxÞÞ ¼ x. The Autoencoder archi-

tecture encodes the input data vector to a single point, that

is the latent vector. In comparison, Variational Autoen-

coder (VAE) is an improved version of the Autoencoder

architecture that converts the input data vector to a

stochastic distribution over the latent space. This difference

is also referred to as the ‘‘reparametrization trick’’

[13, 14, 34].

In VAE, the encoder tries to generate a latent space by

approximating p(z|x) while the decoder tries to capture the

true posterior p(x|z). The vanilla VAE approximates p(z|x)

using qðzjxÞ 2 Q with the assumption that p(z|x) is in the

form of a Gaussian distribution N(0, I). This approximation

is referred in the literature as Variational Inference [13].

Specifically, the encoder outputs the mean lM and the co-

variance rM as the inputs of the Gaussian distribution

function Nðz; lM ; r2MIÞ over a latent space with M number

of dimensions. Hence, the encoder approximates p(z|x)

using q�ðzjxÞ ¼ Nðz; f ðxÞ; gðxÞ2IÞ where lM ¼ f ðxÞ, f 2 F,

rM ¼ gðxÞ, and g 2 G. The decoder’s input, the latent

vector z is sampled from the latent distribution

qðzÞ ¼ Nðz; f ðxÞ; gðxÞ2IÞ. Hence, the loss function consists

of the reconstruction loss and the regularization term of

Kullback–Leibler divergence between q�ðzjxÞ and p�ðzÞ,
Lf ;g ¼ Eq�ðzÞ½logp�ðxjzÞ� � a � DKL½q�ðzjxÞjjp�ðzÞ� ð1Þ

We direct our readers to the original VAE publication [13]

for the mathematical induction of the loss function in Eq. 1

[14]. Note that, some previous works introduced additional

regularization terms to the loss function to condition the

VAE further, such as the introduction of perceptual ratings

of musical instruments in [6].

The LTS framework focuses on Variational Autoen-

coders in comparison with Generative Adversarial Net-

works because we aim for audio synthesis by interpolation

and extrapolation in the latent space of audio frames (see

Sect. 6). The input vectors of the VAE model are CQT

vectors calculated from one audio frame where the window

3 Appendix A summarizes the calculation and parameters of CQT. 4 https://librosa.github.io/librosa/.
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size varies with the frequency bins. We aim to generate a

latent space of audio frames so that we can synthesize

audio with any duration. Previous systems, such as Gran-

nma MagNet [1], utilize audio excerpts with fixed-dura-

tion, where the training input vectors of deep learning

model are 2D audio spectrograms with time along the x-

axis and frequency along the y-axis. This design choice

constraints these DL models to limited applications such as

generating a fixed-length audio excerpt. Our approach

differs from the previous systems because the training

observation of DL model in LTS is one audio-spectrum

vector that is calculated from one audio-frame. This allows

LTS to generate variable length audio in composition tasks.

4.3 Inverse synthesis and audio reconstruction

This version of LTS uses the Fast Griffin-Lim [27] phase

estimation algorithm (F-GLA) for generating audio from

Fig. 1 Latent Timbre Synthesis

framework
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CQT magnitude spectrograms that the VAE decoder out-

puts. Briefly, the GLA and F-GLA estimate the phase

component of a magnitude spectrogram by iterating the

inverse synthesis and the spectrogram calculation multiple

times5. We use the F-GLA implementation in librosa

python library4 to apply the inverse synthesis with phase

estimation to the generated CQT magnitude spectrograms.

The F-GLA module has the highest computation time in

the LTS framework. We are aware that a revision of this

module using another deep learning architecture for

vocoder applications can improve the computational

complexity of LTS while making LTS more lightweight

within real-time applications. We further address this in

Sect. 8.

5 Iterative design of deep learning models

5.1 Audio signal processing

All experiments in this paper used the same audio feature

extraction configurations6. The original CQT paper [31]

mentions that the reconstruction of an original signal from

its CQT coefficients results in a signal-to-noise ratio of 55

dB, approximately. We tried several parameters to find the

configuration that gave the least amount of audio artifacts

with the pipeline of calculating the CQT spectrogram and

then reconstructing the audio back using the magnitude

spectrogram of CQT combined with the phase estimation

algorithm. Notice that these artifacts would appear even

with an ideal DL model because the inverse audio synthesis

introduces these artifacts to the LTS. We used 16-bit and

44.1 kHz stereo or mono audio recordings. We converted

the stereo files to mono first, and then calculated the CQT

spectrograms using a hop-size of 128 samples. The f1
parameter was 32.7 Hz that corresponds to the musical

note, C1. q value in Eq. 5 (Appendix A) was equal to 1,

and the window function was ‘‘hann’’7. CQT included 48

bins per octave for a total range of 8 octaves; which sums

up to a 384 bins in total. Hence, the input of the DL models

is vectors with 384 dimensions. These parameters resulted

in the least amount of artifacts in our experiments. These

parameters can be changed in the source code, and we

encourage our readers to try different parameter

configurations.

5.2 Variational Autoencoders in Latent Timbre
Synthesis

We focused on two deep learning (DL) architectures in the

first version of the Latent Timbre Synthesis framework.

Both models are Variational Autoencoders (VAE); how-

ever, the layers and model parameters differ. The first VAE

model in LTS is a lightweight architecture that consists of

two dense layers in its encoder and decoder (Fig. 2).

In our experiments, the first architecture resulted in the

highest quality of reconstructions of audio signals in

comparison with the second architecture. However, this

first lightweight architecture had 256 latent dimensions,

and we tried to decrease the number of latent space

dimensions in the second architecture. We first added more

dense layers to the architecture in an iterative manner,

while observing an improvement in the final loss values.

Following, we introduced a convolutional layer, which

improved the final loss values even further. However,

additional convolutional layers after the first one did not

improve the final loss8. Hence, we decided on using the

second VAE architecture in LTS, which has one convolu-

tional later and four dense layers (Fig. 3). This architecture

provided the lowest loss values in our experiment; yet, the

reconstructions of audio signal had audible floor noise. Our

trials with instance, batch, layer, and weight normalization

techniques as well as upsampling layers and leaky rectified

linear activation functions did not improve the final loss or

the audio quality of the reconstructions. These trials indi-

cate that around 256 dimensions may be the lowest number

of dimensions to create an audio frame latent space that can

reconstruct any audio recording without a floor noise, due

to the size of digital audio space.

In the first VAE model, we were inspired by previous

work [6] where the authors trained a Variational Autoen-

coder to generate conventional musical instrument timbres

with digital audio synthesis. We initially tried the VAE

Table 1 A previous study provided a comparison of audio frame

reconstruction losses with Variational Autoencoders using spectro-

grams with fixed-length windows and wavelet transform-based

spectrograms [6]

Spectrogram logp(x) jjx� ~xjj2

Fixed Window STFT - 1.9237 0.2412

DCT 4.3415 2.2629

Wavelet Transform CQT - 2.8723 0.1610

NSGT-MEL - 2.9184 0.1602

NSGT-ERB - 2.9212 0.1511

5 We outline the inverse CQT algorithm in Appendix B
6 We summarize the details of CQT calculation in Appendix A

7 https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.

windows.hann.html.
8 Example audio reconstructions using trained models, training

statistics with loss values, and hyper-parameter settings are available

on the project page: https://kivanctatar.com/latent-timbre-synthesis.
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architecture with the same hyper-parameter settings that

were used in the Generative Timbre Spaces project. The

setting of Generative Timbre Spaces [6] was unsuccessful

in our experiments. The model could not learn to regen-

erate the audio recordings in the training dataset and could

only generate noise. Upon further investigation, we found

that the Kullback–Leibler Divergence regularization term

multiplier caused this issue. In Generative Timbre Spaces,

the authors increase the multiplier from 0 to 2 during the

first 100 epochs of the training, following the warm-up

procedure [34]. We suspect that the KLD multiplier range

of [0, 2] is specific to the application of Generative Timbre

Spaces where the training dataset consists of audio files

with distinct harmonic content and low noisiness in the

spectrum. Furthermore, the training dataset size of Gener-

ative Timbre Spaces is rather small, less than 100 MB,

whereas we work with GBs of audio to train the LTS

models. For example, the Sample-FX dataset that we pro-

vide with our source code includes 2 GBs of audio that

corresponds to 3, 084, 591 audio frames as training data

for LTS models, using a hop-size of 128 samples for the

CQT calculation. Hence, we found that the range of [0, 2]

for KLD multiplier was too high for our application and

prohibited the VAE to learn. In addition, the warm-up

procedure had adverse effects on the learning.

After investigating the CQT spectrogram reconstruc-

tions, we decided to test similar hyper-parameters using a

image dataset, the MNIST [18] to further investigate this

issue. Working with this image dataset provided us with

insights on the hyper-parameter settings such as the value

of the KLD multiplier based on their impact on the visual

quality of the reconstructions with MNIST. The images in

MNIST are 28 � 28 pixels, adding up to a total of 784

pixels. This is similar to LTS where the input of the VAE is

Fig. 2 The first deep learning

architecture available in Latent

Timbre Synthesis
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a vector of 384 dimensions. This approach provided valu-

able additional insights that complemented our tests on

hyper-parameter settings to generate audio spectrograms.

Like in the case of our tests with audio spectrograms, we

obtained similar results with the MNIST data. Higher KL-

divergence values as well as the warm-up procedure sig-

nificantly deteriorated the reconstructions of the trained

model. Figure 4a, b shows the effect of KLD multiplier on

the training of the Variational Autoencoder. We used the

same architecture depicted in Fig. 1 and only changed the

input and output dimensions to 784 which corresponds to

the flattened vector of 28x28 images in the MNIST dataset.

In addition, we tested the warm-up procedure and the

reverse settings of the warm-up procedure; however, both

were detrimental to the training in our experiments. We

proceeded with our experiments using KLD values around

1e� 5, given the success of this setting with the MNIST

dataset.

We train the network for 2000 epochs, while the

improvements after epoch 50 are rather in the exploitation9

phase of the learning, and help to minimize the floor noise

in the generated CQT magnitude spectrogram. The learning

rate is 1e�4 and the KLD multiplier in the cost function is

5e�4. The learning rate and the KLD multiplier parameters

are dependent on the training dataset. We recommend the

readers who would be interested to try their own dataset to

start with the hyper-parameter settings above, and change

the parameters when needed.

All VAE architectures in LTS use decoder networks that

are the reversed replicas of the encoder networks, as in

most cases of VAEs. The first VAE model in LTS is a feed-

forward network with two dense layers including 2048

neurons, The dense, dense_1, and dense_2 layers in Fig. 2

apply Rectified Linear Units (ReLU) as the neuron acti-

vation functions. The latent space of our first VAE model

consists of 256 dimensions. This number is still accept-

able given that the previous work [6] used a 64-dimen-

sional latent space to cluster a much smaller range of

conventional musical instrument timbres. Yet, we explored

the possibility to find a deeper network that could generate

a latent space with a smaller number of dimensions.

The second VAE network that we present in this paper

aimed to decrease the number of latent space dimensions of

the first network using a deeper architecture, shown in

Fig. 3. We pursued an iterative design procedure where we

tried to decrease the number of dimensions of the latent

space while maintaining the reconstruction quality and

trying to achieve lower final loss values in the training

runs. Our experiments aimed for a 8-dimensional latent

space, and we first tested increasing the number of dense

Fig. 3 The second Variational Autoencoder architecture available in

Latent Timbre Synthesis

9 Exploration and exploitation are two search strategies in optimiza-

tion applications [35, Sect. 5.3].
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layers. Our experiments found an optimum of 4 dense

layers where the number of neurons is changed by twofold

for each layer (Fig. 3). In addition to the dense layers, we

also tried adding convolutional layers on top of the dense

layers. We imagined that the convolutional layers could

grasp the relationships between frequency bins of a given

CQT vector, such as harmonics. The convolutional layer

generates a 2-dimensional vector with size 24x16, which is

in relation to 48 bins per octave for 8 octaves while trying

to remain as close as to a square. Notice that, each row in

the 2D vector generated by the convolutional layer corre-

sponds to half of an octave. We imagined that this could

further help the network to capture the harmonic content in

the CQT vectors. Our experiments found an optimum of

one additional convolutional layer with 32 filters and a

kernel size of 3 and a stride size of 2 on top of the dense

layers, shown in Fig. 3. The final second network could

decrease the number of latent space dimensions while

giving a low final loss value. However, the network

introduced a consistent floor noise sound in the recon-

structions. The introduction of normalization techniques

such as batch, instance, or layer normalization could not

eliminate the floor noise in the reconstructions. Our find-

ings suggest a balance between the number of latent space

dimensions and the floor noise in the reconstructions where

increasing the number of latent space dimensions is the

solution to eliminate the noise.

Given that audio quality is of great importance in

composition tasks, we focused on using and disseminating

the first network given in Fig. 2. Additionally, the low

computational complexity of the first network can be an

advantage when we combine the VAE with deep learning

models for time-series sequence generation in our future

work, detailed in Sect. 8.

6 User application

The first application of Latent Timbre Synthesis is the in-

terpolate_two framework that allows composers to syn-

thesize sounds using interpolation and extrapolation with

two sounds. The framework requires a trained model to

generate sounds using the latent audio frame space. The

user can select the duration of the generated sound, and can

choose an excerpt from two audio files. These two excerpts

have the same duration. The algorithm uses these two

excerpts for synthesis with interpolation and extrapolation

in the timbre space. The interpolation amount sets how

much of the latent vector is copied from one of the audio

excerpts. For example, 30% interpolation is adding 30% of

the latent vectors of the first audio and 70% of the latent

vectors of the second audio. The percentages above 100 or

below 0 corresponds to extrapolations. For instance, 120%

is moving 20% away from the second audio in the direction

the latent vector that points from audio 1 to audio 2. The

algorithm synthesizes the audio by calculating every audio

frame using inverse synthesis from the generated magni-

tude CQT spectrogram. Hence, the user sets interpolation

amounts for each latent vector that corresponds to one

audio frame. The user can draw an interpolation curve to

change the interpolation percentage in time using the LTS

framework.

The application, interpolate_two, consists of two com-

ponents: Max GUI and the python engine. The Max GUI

handles user interactions while the python engine reacts to

OSC messages coming from Max. The python engine runs

the deep learning model and audio feature extraction (CQT

calculations), as well as inverse synthesis that generates

audio from CQT magnitude spectrogram combined with

Fast Griffin-Lim phase estimation.

The framework of interpolate_two is compatible with all

variations of the VAE architectures given in Figs. 2 and 3.

The B an C regions in the GUI in Fig. 5 load the datasets

and models that are produced within a particular run with

the dataset. Using the regions D and E, the user can select

two audio files from a dataset to choose excerpts. The file

dropdown menu allows the users to select an audio file

from the dataset. ‘‘Zoom to selection’’ sets the view to the

selection area. Clicking ctrl (or cmd on MacOS) and then

dragging the mouse up and down on the waveform views

applies zoom in and out. The waveform in the region F sets

apply interpolation (or extrapolation) amounts per frame,

where x-axis is the time and y-axis sets the interpolation

percentage for a frame. When both waveform views are

zoomed to the selection, the x-axis of the interpolation

curve corresponds to the x-axis of the waveform. The

interpolation curve view is a [waveform*] object. The

‘‘Vertical Zoom’’ parameter in the inspector of this Max

object sets the maximum interpolation/extrapolation

amount. The default maximum is 1.3; hence, [1.0,1.3] and

[- 1.0, - 1.3] are the extrapolation regions. It is possible

to extrapolate even more by changing the vertical zoom

parameter; however, the higher amounts are likely to give

audible distortions. The normalize toggle in region H

allows the user to normalize the generated audio to prevent

audio distortions or extremely high audio volumes while

exploring extrapolation possibilities.

The section H send messages to the python engine to

handle output generation. ‘‘Generate & Play’’ initiates the

python engine to synthesize a sound using the current

interpolation curve and the audio selections. ‘‘Play Again’’

plays the previous generated sound, without going through

the deep learning calculation. ‘‘STOP’’ immediately stops

the audio coming out of the python engine. Phase iterations

sets the number of iterations of the Fast Griffin-Lim

algorithm. Higher number of iterations (max. 64) gives
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better results; however, the calculation takes significantly

longer. The phase estimation algorithm is the bottleneck of

computational complexity of this framework. Still, the

calculation of the audio takes 50% of the audio duration

with phase iteration set to 1. That is, calculating a 2-second

sound takes around 1-second on a laptop with NVIDIA

RTX 2080 Max-Q GPU and 2.20 GHz Intel i7-8750H

CPU.

In the following, we describe our study on incorporating

the interpolate_two and Latent Timbre Synthesis to the

composition frameworks of practitioners.

7 Evaluation

7.1 Participant composers

We invited nine composers and musicians to use Latent

Timbre Synthesis in order to create a new musical work.

During the recruitment process, we paid attention to bring

together a group of participants that represented a wide

diversity of personal interests, cultural backgrounds, cre-

ative approaches, and levels of expertise. The final group of

participants consisted of four students and five established

musicians, seven men and two women, members from

eight different countries on four continents, three working

in academic settings and six working in practical

application domains. The backgrounds of these composers

were diverse, covering Electroacoustic Music Composi-

tion, Computer Science, Performance Arts, Western New

Music Composition, and Interactive Arts. The technical

backgrounds of composers were also varying. Some com-

posers were more familiar with textual coding languages

and Unix shells, whereas other composers were familiar

with visual programming languages such as Max and Pure

Data.

We provided three datasets to composers so that they

could immediately start experimenting with the LTS by

using the interpolate_two. We named these datasets

according to their contents, as Electroacoustic, Western-

Classical, and Sound-FX. The Electroacoustic dataset

included an album of a well-known electroacoustic com-

poser, where the recordings used granular synthesis fre-

quently, and we imagined that a diverse variety of grains in

these recordings could help the training of the deep

learning model in LTS. The total duration of recordings in

this dataset is 48.34 minutes, including the additional 5

minutes of silence that we introduced to improve the

training results. Using a CQT hop-size of 128 samples, this

dataset included 895, 918 frames, i.e. the input vectors for

the VAE training. Figure 6a, b visualizes the latent space

generated by training an LTS model on this dataset. For

this 2-dimensional visualization, we used the Barnes–Hut

variation of the t-Distributed Stochastic Neighbouring

algorithm [20]. Interestingly, we can observe the latent

Fig. 5 The Max GUI of the interpolate_two application
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vectors of a sound object form a path in Fig. 6, which is an

emergent outcome of the LTS.

For the second dataset, we used an album of Western

Classical Music that had recordings of compositions by the

Romantic Era composers. While including this second

dataset, we were curious of the sound qualities of an LTS

model trained on recordings of conventional musical

instruments. The recordings in this dataset added up to a

total duration of 73 minutes that resulted in 1,509,851 CQT

frames for the training.

The third dataset was a sound pack of sound effects

samples that were shared on freesound.org10 with the

Creative Commons Attribution 3.0 Licence. We also gen-

erated the examples that we provide in our supplementary

materials using this dataset11. This dataset included 1140

audio samples that sums up to a total duration of 149.2

minutes of audio, which corresponded to 3, 084, 591 CQT

frames for the VAE training. In our supplementary mate-

rials, we provide a 2-dimensional visualization of this

dataset, where we generated the latent vectors of all audio

frames using our trained model. In the visualization, we

color-coded the latent vectors of individual audio files.

We provided composers pre-trained LTS models11 along

with these three datasets so that they could start experi-

menting with LTS using the interpolate_two. For all three

datasets, we trained an LTS model using the architecture

given in Fig. 2. We organized brief workshops to introduce

LTS and interpolate_two to the composers, and we helped

them through the installation of the framework on their

computers.

We asked the composers to use LTS as a tool to produce

a fixed-media composition of at least 1 minute in duration.

They were free to further process the sounds that they

generated by using the interpolate_two, and use any sound

post-processing effects they preferred. We did not give

composers any restriction other than the minimum time

limit because we aimed to test the LTS within a diversity of

composition practices. We notified composers that we

could train new LTS models on a set of audio recordings

that they provide. We also provided the computational

resources to train LTS models on the recordings given by

the composers.

7.2 Participant interviews

We invited nine composers to use interpolate_two appli-

cation to create a composition with a minimum duration of

1 minute. Then, we asked these composers to fill in a

questionnaire that consisted of the open-ended questions in

Appendix C. The purpose of the questionnaire was to gain

an understanding of how the composers integrated the in-

terpolate_two into their musical workflow on both ideation

and practical levels (questions 1–5), how they subjectively

evaluated the aesthetic qualities of the sounds generated

with the LTS (questions 6, 7, 8, 9, 11), the amount of

mastery they achieved in tool usage (question 10), the

positive and negative aspects in their experience of using

the tool (question 12–14), and their opinion concerning

suitable target groups for the LTS tools.

The following section summarizes the composers feed-

back provided through the interviews12

7.3 Qualitative study results

7.3.1 Iterative sound design in musical composition

All composers used the interpolate_two application within

a diversity of composition frameworks. Previously, the

iteration process of listening and composing has been

referred as action-perception loop in Electroacoustic Music

Composition [40]. The composers of our study carried out

three distinct iteration processes within their composition

practices. Composers 4, 6, and 7 used interpolate_two to

generate a sound palette for their composition. These

composers generated the sound samples before working on

the temporal organization, arrangement, and post-process-

ing of their composition using a Digital Audio Workstation

(DAW). Hence, the iterations on sound design and sound

generation were separate from the iteration of their com-

position. In the second iteration process, Composers 8 and

9 moved back forth between the interpolate_two and their

DAW. As they felt of a need to design more sounds, they

moved back to interpolate_two to generate more sounds.

The third iteration process appeared in the composition

process of Composer 2. This composer only used inter-

polate_two to produce the composition, and did not use any

DAW for composition tasks. In conclusion, the interpo-

late_two as well as LTS fit within a variety of composition

frameworks as a musical tool.

7.3.2 Musical strategies

The composers pursued a variety of strategies to utilize

LTS within their composition processes. Composer 1

approached the interpolate_two application with a specific

goal of generating motives in composition through sound
10 The samples are available to download at the following two links:

https://freesound.org/people/Erokia/packs/26656/ and https://free

sound.org/people/Erokia/packs/26994/.
11 Pre-trained models and example sounds are available at https://

kivanctatar.com/latent-timbre-synthesis.

12 The complete set of answers given by the composers are available

at https://medienarchiv.zhdk.ch/entries/40dda1c8-6287-4356-adf4-

ecdccec46119.
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design. This composer commented that the interpolate_two

as an assisted-composition application allowed a ‘‘multi-

modal approach to synthesis and composition.’’ Composer

1 found the wide range of sound output possibilities of LTS

rather exhausting, whereas Composer 7 and 8 preferred

exploring ‘‘timbral opportunities’’ through the ‘‘unique

capabilities’’ of LTS.

Exploration and exploitation are two search strategies in

Machine Learning. Exploration strategies covers global

searches that allow relatively distant discoveries in the

search space. In comparison, exploitation strategies take

advantage of relatively local findings in the search space to

find a local minima. Previous studies covered how explo-

ration and exploitation functions in preset generation tasks

in sound design [35]. In this study, we also observed that

some composers described exploration and exploitation

phases in their experiences using LTS. For example,

Composers 4 and 5 used the audio excerpt selection and the

interpolation possibilities in interpolate_two application to

conduct the exploration search. Then, both of these two

composers moved to exploitation search by fine-tuning the

interpolation curve.

Fig. 6 Here are the

2-dimensional visualizations of

the latent space generated by an

LTS model trained on the

Electroacoustic dataset, using

t-Distributed stochastic

neighbouring. In Fig. 6a, we

used a portion of original

recordings in the dataset to

improve the clarity of the

visualization
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7.3.3 Musical goals and concepts

The composers initial intentions of using interpolate_two

were also varied. Specifically, the composers came up with

the following musical concepts by using our tools: the

notion of cruising a sonic space, employing interpolation

curves for creating temporal structure either in the form of

imperfect sound loops or dramatic musical arcs, contrasting

recognizable and non-recognizable sounds, exploring

sound artifacts introduced by the tools. Composers 1, 2, 6,

and 7 had a premade concept for their compositions in their

mind, whereas Composers 4, 5, 8, and 9 developed their

concept while using the tool. Composers 1, 2, 6, and 7 tried

to anticipate the possibilities of LTS and derived their goals

from this anticipation. Composers 4, 5, 8, and 9 preferred

to get acquainted with the tool through extended experi-

mentation and let these experiments guide them in their

composition processes.

7.3.4 Familiarity

The acquaintance with the tool was another emerging

concept in our study. Composer 8 specifically spent ‘‘most

of the composition process’’ with getting familiar with the

capabilities of the interpolate_two application and LTS. In

contrast, Composer 6 could not anticipate the results of

interpolation curves. Interestingly, Composer 7 experi-

enced a similar unfamiliarity concerning the effects of

parameter changes but found this unfamiliarity ‘‘engag-

ing.’’ In comparison, Composer 1 initially found the

diverse sound output possibilities of LTS rather exhausting.

After, Composer 1 decided to explore the affordances of

LTS, which allowed this composer to fuse sound design

and composition through the interpolation curve interface

of interpolate_two. Likewise, Composer 9 commented that

‘‘Even during the creation of sounds with [Latent Timbre

Synthesis], the composer is already composing.’’

7.3.5 Affordances

Composer 1 also described that the unique affordances of

interpolate_two allowed following a new compositional

approach. Similarly, Composer 5 expressed that the action-

perception loop in the interpolate_two guided the compo-

sition concept, theme, and goals. Composers 4, 5, and 7

emphasized on the unique and diverse sound output pos-

sibilities of LTS. Composer 4 commented that these pos-

sibilities expanded the composition workspace, and

Composer 7 described the process of ‘‘new sound genera-

tion’’ with interpolate_two as ‘‘engaging.’’

7.3.6 Sound aesthetics

We asked the composers if LTS and interpolate_two

enabled unique aesthetic possibilities. Composer 1 defined

the framework as a ‘‘self-contained tool’’ for ‘‘multimodal

control.’’ Composers 2, 3, 4, 5, 8, and 9 commented on the

uniqueness of interpolation of two timbres using a curve.

Similarly, the interpolation curve enabled the Composer 8

to connect easily with musical aspects of the composition

such as phrasing and rhythm. Composer 5 specified that

‘‘...There’s an inherent sense of working with the tool

rather than the tool working for me that is very apparent.’’

Composer 6 referred to the sound qualities of LTS as

‘‘distinct’’ and ‘‘abstract’’, whereas Composer 9 charac-

terized the interaction with the sound as ‘‘tangible.’’

Although we provided help and computational resources

to train new LTS models for the composers, only two

composers returned back to us for training new LTS

models using their datasets. Composer 2 prepared a dataset

of voice recordings whereas Composer 6 gathered a dataset

of national anthems. Composer 6 mentioned the similarity

between the training dataset and the LTS generated sounds.

Composer 7 noted the signature sound characteristic of

LTS throughout all datasets. Composer 8 described that the

relationship between the LTS sound outputs of Electroa-

coustic dataset and Western Classical Music dataset were

loose. In brief, the composers noted the high dependency of

LTS sound outputs to the training datasets, while recog-

nizing the subtle sound characteristics of LTS that are

shared across all datasets.

7.3.7 Sound quality

Regarding the sound quality of Latent Timbre Synthesis,

there were a variety of responses from the composers.

Composer 7 found the sound quality of LTS reliable and

consistent with the recordings in the training dataset while

Composer 4 commented the audio quality as ‘‘satisfac-

tory.’’ Composers 8 and 9 noted how the variety in sound

possibilities depended on the dataset. Composers 1, 2, 3,

and 5 noted the sound quality of LTS as ‘‘noisy’’. Com-

poser 5 defined the noisiness aspect as ‘‘interesting and

evocative’’ whereas Composer 6 emphasized how the

sound quality depends on the interpolation curve. Com-

poser 6 noted that ‘‘Dynamic interpolation curves resulted

in richer sounds.’’ Lastly, Composer 8 highlighted that the

sound qualities of LTS were in line with Electroacoustic or

Electronic Music.

Furthermore, Composer 3 pointed out that the noisiness

was the most prominent when the interpolation amount was

set to 50%, which is also the same amount that we use for

the example in Fig. 6. We can observe in Fig. 6 that the red

and blue sounds have distinct latent paths. A linear
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interpolation of 50% in between these distinct latent paths

vaguely resembles both paths. We suspect that this linear

interpolation approach is the main cause of the increased

noisiness with the interpolation amounts around 50%. We

mention future directions to address this issue in Sect. 8.

7.3.8 User interface

Additionally, the composers commented on the user

interface (UI) of the interpolate_two application, illustrated

in Fig. 5. Composer 4 mentioned that this UI was ‘‘simple

and user friendly’’; whereas Composer 3 and 5 highlighted

the clarity of the layout. Composer 3 went further to

understand the source Max patch of the interpolate_two,

and found the layout of the source patch confusing. Com-

poser 2 referred to the overall UI as ‘‘intuitive.’’ However,

Composer 2 was frustrated with the impreciseness of the

interpolation curve UI.

7.3.9 Tool deficiencies

We asked the composers what were their frustrations when

working with the LTS through the interpolate_two. Com-

poser 1 guessed that the infamous ‘‘blurry’’ outputs gen-

erated by Variational Autoencoders hampers the full

potential of timbre interpolation. Composers 3 and 4 were

frustrated that the sound generation was not in real-time.

Composers 8 and 9 asked for future versions to include

stereo output generation. Composer 5 wished that the

training of new LTS models were easier. Currently, the

VAE model training on the Electroacoustic dataset takes

around 6 hours on a high-end GPU. In comparison, the

interpolate_two application takes approximately 50% of

the audio duration to calculate a sound using a trained VAE

model on a latest computer, and the application does not

necessarily need a GPU. That is, the application takes 1

second to generate a sound with 2 second duration.

7.3.10 Continued use

Lastly, all composers noted that they would continue using

LTS and interpolate_two. We think that this result indi-

cates the successful incorporation of the Latent Timbre

Synthesis within a diversity of composition frameworks

through the interpolate_two application. All composers of

this study used their own computers to work with the in-

terpolate_two and the LTS models, which indicated that

the computational resources required to run the framework

were manageable across various consumer level

computers.

8 Conclusions and future work

We introduced the Latent Timbre Synthesis (LTS), a

flexible audio synthesis framework that can change the

sound output possibilities using a training dataset of audio

recordings. We explained the three main parts of the LTS

framework, Constant-Q Transform calculation, latent audio

frame space generation with deep learning, and inverse

synthesis using magnitude CQT spectrograms and Grifin-

Lim phase estimation. We focused on Variational

Autoencoders to generate the latent space, which later

allowed new synthesis possibilities through interpolation

and extrapolation of latent vectors of two audio excerpts.

We gave the details of interpolate_two, an application that

enables composers of all levels to incorporate the LTS

within their composition practices.

The evaluation study pointed out that the overall expe-

riences of composers interacting with the Latent Timbre

Synthesis through interpolate_two were positive. The

comments of the composers directed us towards possible

future research directions. The composers commented on

the increased noisiness of generated sounds using the linear

interpolation between latent vectors. We aim to address

this issue by exploring different interpolation techniques

that takes the latent paths into account. The visualizations

of the latent audio frame space generated by trained LTS

models indicated that sound objects created distinct paths

in the latent space generated by VAE models. As future

research, we would like to explore how to incorporate these

latent paths to the interpolation and extrapolation of tim-

bres, beyond linear interpolation. One possible option

would be to experiment with integration of discrete-time

derivatives of latent vectors into the interpolation calcula-

tion. We could also further improve the sound quality of

the LTS by adding an additional training step where a new

decoder architecture is trained. In this additional training

step, we can exchange the decoder of the Variational

Autoencoder with a new decoder architecture that gener-

ates the raw audio using the latent vectors generated by the

VAE encoder. This would also eliminate the requirement

of Griffin-Lim phase estimation, which is the main bot-

tleneck of LTS’s computational complexity. In the litera-

ture of speech synthesis, the DL architectures for vocoder

applications seem promising to improve the decoder of the

current architecture in the Latent Timbre Synthesis.
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Appendix A Constant-Q transform

We can calculate the CQT of an audio recording [31], a

discrete time domain signal x(n), using the following

formula:

XCQðk; nÞ ¼
XnþbNk=2c

j¼n�bNk=2c
xðjÞa�kðj� nþ Nk=2Þ ð2Þ

where k represents the CQT frequency bins with a range of

[1, K], and XCQðk; nÞ is the CQT transform. Nk is the

window length of a CQT bin, that is inversely proportional

to fk that we define in Eq. 4 Notice that, b�c is the rounding
towards negative infinity. a�k is the negative conjugate of

the basis function akðnÞ and,

akðnÞ ¼
1

Nk
w

n

Nk

� �
exp �i2pn

fk
fs

� �
ð3Þ

where w(t) is the window function, fk is the center fre-

quency of bin k, and fs is the sampling rate. CQT requires a

fundamental frequency parameter f1, which is the center

frequency of the lowest bin. The center frequencies of

remaining bins are calculated using,

fk ¼ f12
k�1
B ð4Þ

where B is the number of bins per octave.

CQT is a wavelet-based transform because the window

size is inversely proportional to the fk while ensuring the

same Q-factor for all bins k. We can calculate the Q-factor

using,

Q ¼ qfs

fkð2
1
B � 1Þ ð5Þ

where q is scaling factor with the range [0,1] and equals to

1 as the default setting. We direct our readers to the orig-

inal publication for the specific details of the CQT [31],

which also proposed a fast algorithm to compute CQT and

inverse CQT (i-CQT), given in Fig. 7.

(a)

(b)

Fig. 7 A fast algorithm to compute CQT and i-CQT, described in [31] and implemented in Librosa [22]
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Appendix B Phase estimation algorithms

Given an audio signal x(n) and its frequency transform X(i),

where N is the total number of GLA iterations, T and IT

is the frequency transform and inverse frequency transform

function respectively; such as Short-Fourier Transform, or

Constant-Q Transform in our case. Note that, the space of

audio spectrograms is a subset of the complex number

space. The iterative process of Griffin-Lim moves the

complex spectrogram of the estimated signal x̂ðnÞ towards
the complex number space of audio signals in each itera-

tion, as proven in [9].

The Fast Griffin-Lim algorithm (F-GLA) is a revision of

the original Griffin-Lim algorithm. A previous study [27]

showed that the F-GLA revision significantly improves

signal-to-noise ratio (SNR) compared to the GLA, where

the setting a ¼ 1 (a constant in algorithm 2) resulted in the

highest SNR value.

Appendix C Interview questions

1. Describe your compositional process when working

with the Timbre Space tools

2. What was the theme and concept of your

composition?

3. How did you incorporate the Timbre Space tools into

your work?

4. How did working with the Timbre Space tools

change your composition workflow? What was

unique?

5. What additional tools/technologies apart from the

Timbre Space tools were involved in your work?

6. How would you describe the sound qualities of

Timbre Space?

7. What were the unique aesthetic possibilities of the

Timbre Space tools?

8. What kind of dataset(s) did you train Timbre Space

with?

9. If you trained Timbre Space with several datasets,

what kind of relationship did you notice between the

datasets and the musical results obtained from

Timbre Space?

10. Did you feel control, and authorship over the musical

material generated?

11. Did you achieve the aesthetic result you intended?

12. What were the positive aspects when working with

the tool?

13. What were the frustrations when working with the

tool? How can it be Improved?

14. Would you use it again (if the above were

addressed)?

15. For whom else or what musical genres/sectors would

this tool be particularly useful (if the criticism was

addressed)?
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