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ABSTRACT

Revive is an live audio-visual performance project that
brings together a musical artificial intelligence architec-
ture, human electronic musicians, and audio-reactive vi-
sual agents in a complex multimedia environment of a dome
view with multichannel 3D audio. The context of the project
is live audio-visual performance of experimental electronic
music through structured improvisation. Revive applies
structured improvisation using cues and automatized pa-
rameter changes within these cues. Performers have dif-
ferent roles within the musical structures initiated by the
cues. These roles change as the performance temporally
evolves. Sonic actions of performers are further empha-
sized by audio-reactive visual agents. The behaviours and
contents of sonic and visual agents change as the perfor-
mance unfolds.

1. INTRODUCTION

Revive is a live audio-visual performance project that fea-
tures two human performers, and MASOM, which is a mu-
sical agent, an artificial intelligence (AI) architecture for
live performance 1 . For each sonic performer in Revive,
a corresponding visual agent puts sonic gestures and tex-
tures into live generative images. The visual agents use a
machine listening algorithm in the input module to exhibit
audio-reactive behaviours with generative visuals. This re-
veals the musical gestures that are so often lost in elec-
tronic music performance.

Revive’s aesthetics span a variety of experimental elec-
tronic music styles including acousmatic music, soundscapes,
glitch, intelligent dance music (IDM), and noise music.
Acousmatic compositions use electronic means to create
or process sounds to produce compositions. Soundscapes
use field recordings of the environment outside the studio
as the musical content. Glitch music explores the idea of
using sounds that are generated by the failure of any pro-
cedure. For example, glitch performers overload the cpu to
generate clicks and drops on the audio output. IDM com-
posers use any sound object to produce dance music, ex-
tending their audio palette to unconventional sounds. Glitch

1 A recording of a Revive session is available at https://
kivanctatar.com/revive where the audio is the binaural encod-
ing of the 3D audio setup.
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sounds such as clicks, short impulsive noises frequently
appear in IDM compositions. Noise music stands on the
louder and aggressive end of the musical composition con-
tinuum. Noise music employs loud sounds to stimulate the
body. The stimulations can be an ear pain caused by the
loud sounds or pulsations generated by loud bass frequen-
cies to vibrate the human body.

The musical AI in Revive, Musical Agent based on Self-
Organizing Maps (MASOM) is an audio-based musical
agent with autonomous unsupervised learning. Musical
agents are artificial agents that automatize musical creative
tasks [1]. Musical agents differ from purely generative sys-
tems because of autonomy, reactivity, proactivity, adapt-
ability, coordination, and emergence behaviours.

The architecture of MASOM proposes an innovative ap-
proach by combining a sonic latent space generation with
statistical sequence modelling for temporal musical struc-
ture. The autonomous, unsupervised learning in MASOM
only requires audio recordings. The musical agent creates
a sound memory through automatic audio segmentation
and thumbnailing, using audio features of timbre, loud-
ness, fundamental frequency, duration, and music emotion
features of eventfulness and pleasantness. The agent or-
ganizes sounds on a two-dimensional map so that simi-
lar sound clusters locate closer to each other. MASOM
learns the temporality of musical form by applying statis-
tical sequence modelling on the organized sound memory.
Hence, the agent assumes the musical form as temporal
shifts on sound clusters that are organized in the feature
space. In Revive, we use a variation of MASOM architec-
ture, where previous statistical sequence modelling algo-
rithm, VMM-PPM-C is exchanged with the Factor Oracle
algorithm [14] to improve timbre consistency for the cases
where the agent is trained on big-size audio recording data
ranging from 1-GB to 100GB.

Revive project exemplifies how to incorporate an unsu-
pervised, audio-based musical AI system into an audio-
visual live performance. The cue system of Revive autom-
atizes parameter changes that initiate musical sections in
the performance. This allows performers to focus more on
the aesthetics and less on the technical complexities. The
cue system defines roles where the performers can explore
improvisation within musical roles. Some examples of
these roles are filling the background sonic canvas, gener-
ating repetitive bass with fast spatial movements, improvis-
ing within a constrained spectrum, improvisation through
reaction towards the sonic gestures of musical AI, and stay-
ing quiet. Hence, the cues automatically set a structured
improvisation setup in the complex performance environ-
ment of Revive. In the context of improvised (or non-
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idiomatic) music, structured improvisation is free impro-
visation with predefined constraints for musical sections.
In addition, the synchronization of 3D audio spatialization
with the audio-reactive generative visuals emphasizes the
sonic gestures of performers in Revive. The specifics of 3D
audio setup that we mention in this paper clarify the tech-
nical details of the performances at the Société des Arts
Technologique (SAT) dome with 157 speakers clustered to
31 audio channels 2 . However, the spatialization tools in
Revive is flexible for any 3D or 2D audio speaker setup.

In the following, we first give a brief introduction to the
Creative Artificial Intelligence and Multi-agents Systems.
We continue by explaining the performance setup of Re-
vive. Then, we delve into the reactive agent architecture of
the visual agents. We move further with the technical de-
tails and aesthetic background of sonic strategies in Revive.
Finally, we conclude by the discussions around previously
mentioned topics while proposing possible future steps.

2. MULTI-AGENT SYSTEMS IN CREATIVE
ARTIFICIAL INTELLIGENCE FOR MUSIC AND

MULTIMEDIA

Creative Artificial Intelligence (AI) for Music explores the
applications of autonomous systems of Applied AI and
Multi-agent Systems (MAS) for musical applications [2].
Autonomous system architectures for creative tasks dif-
fer from conventional architectures that aim to solve tasks
with optimal solutions. Creative tasks often lack optimal-
ity, and the quality measures are ill-defined. For exam-
ple, there is no universal objective measure to assess if
one acousmatic composition is better than any other. The
lack of objective measures asks for system designs where
the possibilities of connections between autonomous be-
haviours and artistic aesthetics are explored. In many cases,
the architectures work with a set of hyper-parameters where
the user can manipulate the autonomous behaviour by ex-
ploring the space of these parameters.

Artifical agents in MAS are autonomous software with
perception and action capabilities. Musical agents are im-
plementations of Multi-agent systems combined with ap-
plied artificial intelligence and machine learning algorithms
for musical applications. We previously clarified six levels
of musical agent behaviours: 1- Reactivity, 2-Proactivity,
3- Interactivity, 4-Adaptability, 5-Versatility, 6-Volition and
framing; where the higher levels can inherit properties of
the lower levels [1].

The visual agent architecture in Revive aims for reactive
behaviours whereas the musical AI, MASOM’s initial ar-
chitecture with VMM-PPM-C can exhibit interactive and
adaptive behaviours. In Revive, we give up on the adap-
tive behaviours of MASOM with the Factor Oracle variant
(MASOM-FO) to improve timbre consistency with mid-
size datasets. The interactivity of MASOM-FO is more on
a higher level through user interaction, where the user can
change the statistical sequence model on the fly.

3. THE PERFORMANCE SETUP

Three sonic performers (including the musical AI MA-
SOM) improvise in Revive and the performers are con-

2 http://sat.qc.ca/en/satosphere

Figure 1: The UI of Revive’s performance setup

strained within certain musical roles that are defined per
musical sections. The performers apply various sonic strate-
gies that we clarify in Section 5. The sonic actions of
performers are visualized with a visual agent with audio-
reactive behaviours. The localization of generated visuals
follows the 3D spatial location of the audio. In addition to
3D audio with three sources, the second author also outputs
a background channel that is directly send to all speakers.
This helps to create a sonic background canvas for the per-
formers in the foreground.

The Revive performance applies a cue system to handle
parameter changes automatically (Figure 1). The cues also
define musical sections where the sonic performers impro-
vise within certain roles. The cues are automatically ini-
tiated at certain moments using a timeline. The cue sys-
tem is implemented within the Jamoma 3 framework in
Max 4 [3]. This framework automatically gathers all pa-
rameters of Max abstractions coded as Jamoma modules.
The Jamoma’s cue system allows a simple scripting where
the parameters can be linearly ramped to any value. The
script engine can also put into a halt for a certain time us-
ing the ”WAIT” command. These features provide a sim-
ple, yet powerful coding of complex performance environ-
ments where many parameters constantly change. The cue
system with Jamoma, sonic strategies in Revive, and ma-
chine listening modules of visual agents are implemented
in Max. The visuals are generated and rendered to the
dome view in Derivative’s Touch Designer 5 . These two
applications are networked through an OSC communica-
tion.

3 http://jamoma.org
4 https://cycling74.com/products/max
5 https://www.derivative.ca/
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4. AUDIO-REACTIVE VISUAL AGENTS IN
REVIVE

The visual agents aim to improve the audience’s perception
of sonic gestures. The visual agents are generative and re-
acts to the sonic performers by using a machine listening
algorithm. Using reactive behaviours, three visual agents
emphasize the actions of audio agents and make it easier
for the audience to comprehend the connection between
sonic gestures and the sonic performers’ actions.

The visual agent architecture consists of a machine lis-
tening module for audio feature extraction and a particle
engine to generate visuals. The location of particle en-
gines’ rendered outputs are synchronized with the spatial
location of sonic performers in the 3D audio setup. As the
sonic performers move in the 3D audio, the visuals fol-
low the locations of sonic performers. During the Revive
performances, three types of particle renderings provide
variety in the visual content: 1- particles as sprites, 2- par-
ticles for drawing lines, 3- particles for drawing triangular
shapes (Figure 2). The audio-reactive behaviours of three
particle engines apply mappings of sonic performers’ au-
dio features to the input parameters of particle engines.

The machine listening modules of visual agents imple-
ment an onset detection with onset loudness detection and
calculate continuous total loudness and specific loudness [4].
The onset detection uses the magnitude spectrum and if
the summation of magnitude powers of all bands pass a
user-set threshold, an onset is detected. Specific loudness
is the loudness calculated for the Bark bands that is a 24-
band spectrum that approximates critical bands of human
hearing. We also apply a post-processing on the specific
loudness to calculate a 3-band loudness spectrum of bass,
middle, and high bands. The first two Bark bands are com-
bined for the bass spectrum, the last eight bands are joined
for the high spectrum, and the remaining fourteen bands
constitute the middle band. The audio features are calcu-
lated for all sonic performers separately.

The audio features of a sonic performer are mapped to
the parameters of corresponding particle engine. The total
loudness is mapped to the overall particle speed and the
brightness of particles. Two color schemes are applied: 1-
static per performer, 2- the loudness of the mid-band con-
trols the amount of green in red-green-blue color represen-
tation. Additionally, if the total loudness passes a certain
threshold (above -3 dB for example), the type of noise that
scatters the particles changes. This increases the overall
movement of particles when the loudness moves closer to
the maximum. Regarding rendering type 2 and 3 (Figure
2b and 2c), the particles have a life-span which is also a
gaussian distribution. A static noise generates the birth lo-
cations of particles and the attraction points that the parti-
cles move towards within their life-time. The scale of birth
locations is linearly mapped to the loudness of the bass
spectrum. When there is more variance in the bass spec-
trum, the distances between the particle birth locations and
the attraction points increase, which results in an increase
in the fast movement behaviors of particles. The particles
are re-initiated when the loudness of an onset passes a -6
dB threshold. As we mention in Section 3, the second au-
thor also plays a background channel that directly outputs
to all speakers. Lastly, the total loudness of this channel

(a) Rendering type 1 - particles as sprites

(b) Rendering type 2 - particles for drawing lines

(c) Rendering type 3 - particles for drawing triangular shapes

Figure 2: Three snapshots of dome views illustrate three
types of particle engine renderings. In each figure, three
distinct colors corresponds to three visual agents that react
to three sonic performers.
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Figure 3: The offline learning in MASOM: a) Segmentation
b) Labelling the audio samples c) Sound memory where
squares stand for SOM nodes that are a clusters of audio
samples d) Creating a symbolic representation of the orig-
inal song using the clusters indexes of audio samples e)
statistical sequence model to learn temporal transitions.

controls the amount of post-processing effects such as blur
and feedback applied to all visuals.

5. SONIC STRATEGIES IN REVIVE

The first and the second author join MASOM in the sonic
performance of Revive. These three performing agents ap-
ply different techniques and approaches, which come to-
gether through pre-defined roles within the structured im-
provisation. Revive’s aesthetics allow performers to impro-
vise within these roles, and this introduces live sonic ges-
tures back to the performance. In the following sections,
we delve into the techniques of three sonic performers.

5.1 Musical Artificial Intelligence, MASOM-FO

Varèse defines music as “nothing but organized sounds” [5].
Inspired by this idea, MASOM’s system design implements
a neural networks algorithm combined with statistical se-
quence modelling algorithms in Max. The neural networks
algorithm organizes the sound memory of the agent whereas
the statistical sequence modelling algorithms handle the
temporal musical structure modelling and user interaction.
MASOM’s unsupervised learning requires a set of audio
recordings. The agent implements a Music Emotion Recog-
nition algorithm in the machine listening module.

MASOM applies offline learning and online generation.
The offline learning starts with segmentation of individual
sounds in the recording (Figure 3a and 3b). The agent rec-
ognizes the audio segments between onsets as audio sam-
ples. MASOM use spectral magnitude based onset detec-
tion where an onset is detected when the summation of
spectral magnitudes passes a user defined threshold. The
implementation of segmentation and audio feature extrac-

tion uses IRCAM’s MuBu Max Package 6 [6] and PiPo
externals 7 . Following the segmentation, the training pro-
cedure labels audio samples with a 35-dimensional audio
feature vector including:

– Timbre features: Perceptual Spectral Decrease and
13 Mel-frequency Coefficients (MFCCs)

– Fundamental Frequency

– Loudness

– Duration of audio sample

– Music Emotion Recognition (MER) features

Regarding timbre features, loudness, and fundamental fre-
quency; we first calculate the features using a window size
of 1024 samples and hop size of 256 samples, then we
calculate the mean and standard deviation of these fea-
tures per audio sample. The statistics of loudness, and
13 MFCCs, perceptual spectral decrease, and YIN-based
fundamental frequency estimation 8 adds up to 32 features
((1 + 13 + 1 + 1) ∗ 2 = 32). In addition, we add the dura-
tion of audio samples, and two MER features and the total
number of audio features constitutes a 35-dimensional la-
bel vector.

The particular MER model that we use in the system de-
sign of MASOM is a two-dimensional, continuous multi-
variate linear regression model using the following equa-
tions:

Pleasantness =− 0.169+ (1a)
− 0.061 ∗ Loudnessmean

+ 0.588 ∗ SpectralF latness1mean

+ 0.302 ∗MFCC1std

+ 0.361 ∗MFCC5std

− 0.229 ∗ Percept.Spect.Decreasestd

Eventfulness =− 1.551 (1b)
+ 0.060 ∗ Loudnessmean

+ 0.087 ∗ Loudnessstd
+ 1.905 ∗ PerceptualTristimulus2std
+ 0.698 ∗ PerceptualTristimulus3mean

+ 0.560 ∗MFCC3std

− 0.421 ∗MFCC5std

+ 1.164 ∗MFCC11std

We generated this MER machine learning model using
the Emo-soundscapes dataset that contains 600 curated sound-
scape recordings [8]. In the audio domain, the terms va-
lence and arousal is exchanged with eventfulness and pleas-
antness, respectively [9]. This is mainly because of the
contradiction that a sound does not feel an emotion, but
stimulate an emotion. Hence, we can’t label a sound with
emotion categories of human cognition. For example, we
can’t talk about a happy sound (excluding anthropomor-
phism), but we can say that some sounds initiate happiness
feelings in humans.

6 https://forumnet.ircam.fr/product/mubu-en/
7 http://ismm.ircam.fr/pipo/
8 Please refer to [4] for the details of audio feature calculations and [7]

for the YIN algorithm.
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Following the segmentation and labelling audio samples,
the agent trains a Self-Organizing Map to create a latent
space of sonic possibilities (Figure 3c). In this latent space,
similar sounds locate close to each other. Self-Organizing
Maps are fully connected artificial neural networks with
unsupervised learning[10, 11]. SOM is used for visualisa-
tion, representation, and clustering of high-dimensional in-
put data with a 2D topology of square, rectangular, toroid,
and arbitrary shapes (such as Mnemonic SOMs). SOMs
consist of a number of nodes that position themselves dur-
ing training to represent the topology of the input data.
The nodes are vectors with the same number of dimensions
with the input data. Hence, SOM creates a symbolic latent
space that represent the topology of the training data.

MASOM incorporates the SOM implementation included
in ml.star Max Package [12]. Regarding the SOM train-
ing 9 , we first normalize the input data using the equation
2:

Inorm[i] =
I[i]

M [i]
∗ STD[i] (2)

and i ∈ [1 : N ], where the N is the total number of dimen-
sions of the input vector, I is the calculated audio feature
vector, M is a vector that gives the average of each audio
feature, STD is a vector of standard deviation of each au-
dio feature, and Inorm is the normalized feature vector. M
and STD are calculated for a given corpus.

Then, we apply a weight vector on the normalized input
data of SOM. In the weight vector W , MFCC features are
multiplied by 1/13 so that combined MFCC distances af-
fect the SOM training as one timbre feature. The rest of
the features are kept at the original value.

a = int(
√

the number of audio samples in the memory/6)
(3)

After the the pre-processing, we train an SOM map with
square topology, a ∗ a where a is found by using the equa-
tion 3 that aims for 6 samples per cluster. We found that
this approach consistently gave a low number of SOM nodes
where no audio sample was clustered. The total number of
epochs in the SOM training is 1000. The learning rate and
the neighbourhood drops from 0.25 to 0.01 and a/4 to 0,
respectively.

Clustering follows the training of SOM sound memory.
We calculate Euclidean distance between SOM node vec-
tors and thumbnail vectors of audio samples in the agent’s
memory. The audio samples are labelled with the SOM
node that gives the lowest Euclidean distance. The num-
bers within the segment squares in Figure 3a are the closest
SOM node indexes. Following this labelling, we generate
a symbolic representation of the original song using the se-
quence of SOM node indexes (Figure 3d). This sequence
is later used to train the statistical sequence modelling al-
gorithm.

The agent can generate compositions on the fly and change
musical structure models through user interaction. A sta-
tistical sequence modelling algorithm learns and generates
SOM node index sequences (Figure 3d). These nodes are
clusters of audio samples, and the agent chooses a sample
clustered by an SOM node randomly. MASOM’s training
aims for 6 audio samples per node, and the sonic variation
within a node is constrained because of the unsupervised

9 The details of SOM training procedures is available at [11, 13].

0 1 2 3 4 5A B A A B

B A

Figure 4: Factor Oracle generated using the sequence
ABAAB.

learning. Hence, the random sample selection within the
SOM node audio cluster implements a type of constrained
sonic variation in the agent’s output.

MASOM’s architecture was initially using Variable Markov
Models (VMM) Prediction by Partial Matching C (PPM-
C) variant [13]. MASOM VMM PPM-C variant was trained
on small and medium size audio corpora ranging from an
album to approximately 1GB of audio recordings (lossless
stereo wave files). Although the interactive nature of MA-
SOM VMM PPM-C variant was satisfying enough for pub-
lic concerts with small and medium size corpora, we real-
ized that this variant lost timbre consistency with big size
corpora ranging from 1GB to 100GB of audio recordings.
Hence, we switched MASOM’s statistical sequence model
to a generative Factor Oracle algorithm to ensure timbre
consistency and we refer to this variant as MASOM-FO.

Factor Oracle, initially proposed as a compression algo-
rithm, is a statistical sequence modelling algorithm as well
as a finite state automata [14]. FO models repeating pat-
terns in a sequence, which are the factors of a sequence.
FO has three types of links: internal links (forward links
between successive states), external links (forward links
that jumps to a future state), and suffix links (backward
links, dashed lines in Figure 4). Suffix links marks the
longest repeating factor in previous states. FO allows in-
cremental learning, and learning is linear in time and space [15].
Several musical agents previously implemented FOs in the
architecture [1, p. 26-29].

The training of FO allows a single sequence for training.
In MASOM’s case, the agent’s corpora include several au-
dio recordings and the symbolic SOM node representations
of these recordings 10 . This constraint emerges two op-
tions for FO training: 1- concatenating several (or all) sym-
bolic representations of audio recordings to one sequence,
2- using the symbolic representation of only one recording.
The first option risks timbre consistency as various audio
recordings cover a wide range of timbre possibilities, even
within the same musical style. Hence, we apply option two
in Revive project to ensure timbre consistency.

MASOM-FO incorporates Wilson’s [16] Max external im-
plementation which is sufficiently fast for real-time train-
ing. In Revive’s structured improvisation, MASOM’s role
in the performance is constrained by the FO training. In
each section, we train the agent’s FO from scratch using
the symbolic representation (the sequence of sound cluster
indexes) of one audio recording. This results in a high-
level user interaction where the user defines the musical
constrains and roles of the agent by forcing a subset of
sound clusters, and the temporal patterns and structures of
an audio recording. The subset of sound clusters may con-
tain samples of other recordings due to the SOM training,

10 The details of FO training is available in [16].



and this introduces variety in the agents audio output.
FO initiate SOM node (cluster) index generation with

sound selection using two approaches: 1- playing one sam-
ple after another, 2- user-defined time intervals. The first
approach outputs one layer of sound events where each
sample is concatenated one after another. This approach
generates a monophonic output as the FO waits for the pre-
vious sample to finish before initiating the next one. The
second approach creates a multi-layered output where the
user can change the audio event density by manipulating
the time intervals between sample initiations. The agents
uses FO to output a sound cluster index in user-defined in-
tervals. Using any of these two approaches, FO outputs
a sound cluster index. MASOM chooses a sample within
that cluster randomly. The random picking of samples is a
constrained selection because of the SOM clustering, and
it aims for the generation of constrained variation in the
agent’s output. In Revive, these two generative approaches
are initiated by performance cues. We carry out the au-
dio event density manipulation in the second approach by
applying linear ramps on the time interval parameter.

5.2 Distruption of fixed-media

Acousmatic music facilitates electronic means to create or
process sounds to produce musical compositions. The pub-
lic presentations of acousmatic music happens as playback
of the compositions without any interaction, or live mixing
of prepared tracks using volume adjustments, fade ins and
outs, equalizers, and spatialization [17]. The second author
puts a rich MAX-based sampler player, Kenaxis 11 into
practice with samples of analog machines such as EMS
Synthi AKS, Korg Mono/Poly, Serge and Eurorack analog
modular synthesizers, as well as field recordings of forests,
waterfalls, and thunderstorms. Samplers and granular syn-
thesis engines are controlled live with a BCF-2000 MIDI
controller. The setup allows a sonic palette of background
layers made of drony textures, as well as foreground ges-
tures including more melodic motifs with live effects.

The reflections of the third wave of HCI studies have
initiated the introduction of embodied interaction for live
music performances [18] and proposed a combined under-
standing of sonic and bodily interaction [19]. In line with
the live performance trends in computer music, the first
author’s live sonic performance transforms his fixed-media
compositions to sonic material for improvisation combined
with live generation of sonic gestures. In this self-disruption
process, the first author metamorphoses his previous fixed
media pieces to a sonic vocabulary for live improvisation
of experimental electronic music. To do so, the first au-
thor combines wavetable synthesis with a game controller
interface to improvise experimental electronic music on a
3D speaker configuration (Figure 5).

Wavetable synthesis uses varying playback speeds to ma-
nipulate an audio buffer to synthesize sounds. Varying
playback speed generates pitch-shifting and time-stretching
audio manipulations, and it is possible decorrelate these
two manipulations [20]. The wavetable synthesis utilize
an audio buffer and allows sudden changes of the audio
in the buffer. The first author’s performance practice in
Revive applies one-minute long excepts from his previous

11 https://www.kenaxis.com/products/kenaxis-2/

fixed media compositions (Figure 5b). The audio buffer of
wavetable synthesis is a certain portion (window) of these
one minute excerpts. This approach provides a sonic di-
versity using varying window sizes and positions using a
game controller as the interface.

The first author utilizes an XBox controller that includes
two joysticks buttons underneath, one d-pad, 9 additional
buttons (x,y,a,b, left-button, and right-button), and two trig-
gers that acts as sliders, illustrated in Figure 5a. The joystick-
2 handles the interaction with the spatialization and the
rest manipulates the wavetable synthesis. Although the
joystick-2 outputs a 2-dimensional spatial position, we project
2D positions on a 3D spherical surface to create 3D spatial-
ization trajectories in azimuth-elevation-distance format us-
ing the equations,

r2D =
√

(position x2D)2 + (position y2D)2 (4a)

azimuth3D = arccos(
position x2D

r2D
) (4b)

elevation3D =
π

2
∗ (1− r2D) (4c)

where r2D is the distance from the center in 2D, azimuth3D
and elevation3D ranges are [−π, π] and [0, π2 ]; respec-
tively. The distance is static, and this ensure 3D spatial-
ization while preserving the original loudness of the audio
source.

The y-axis of joystick-1 controls the amount of pitch-
shifting, and the x-axis controls the multiplier of time-stretching.
When joystick-1 is in the resting position, the wavetable
synthesis plays the original content in the audio buffer.
The button on the joystick-1 plays the sound; hence, there
is no sound coming out when the user moves the hands
away from the interface. The button x reverses the audio
buffer. The button b allows a toggle for continuous audio
play for occasion where a sustained continuous playback is
needed, such as textural sounds that functions in the sonic
background. Hence, the performer can explore a contin-
uum of sonic choices from gestural foreground actions to
textural background material. The up and down buttons
on the d-pad adjust the output volume, and left and right
buttons change the source spread in the 3D spatialization.
The spread controls the total area of audio source diffu-
sion. The buttons a and y set the spread to 1% and 90% in
2-seconds, respectively. The performer can cycle through
several audio buffers using start and back button. Lastly,
the home button resets the output volume to 0 dB in 3-
seconds.

5.3 3D audio spatialization techniques in Revive

Sonic performers in Revive are spatialiazed in 3D speaker
setups using IRCAM-SPAT Max library 12 [21]. This li-
brary is fast and flexible to change 3D audio speaker se-
tups and test spatialization methods in soundchecks and
rehearsals where the time is limited. In Revive, we use
3D vector-based amplitude panning (vbap3D). The audio
source positions are processed using the azimuth-elevation-
distance format. The distance is static so that performers
change the loudness of their output as they prefer. Through-
out this paper, the elevation range is [0, π2 ] that addresses

12 https://forumnet.ircam.fr/product/spat-en/
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Figure 5: The framework for using fixed-media compositions as content for the live audio-visuals with 3D audio: a) the
game controller interface and the mappings b) wavetable synthesis c) 3D audio visualization with the SAT dome setup.

the setup of the SAT dome. The elevation range is an in-
put variable for all spatialization modules for different 3D
speaker setups.

The first author controls the spatial location using the joy-
stick on the game controller. The output of second author
and MASOM are positioned using three different genera-
tive trajectories: circular, tangential, and random-walking.
The movement speed is a variable in all three cases, and
it is changed with the cue system of Revive. The first
method cycles the azimuth using a speed variable (degree/
s) and the elevation can be fixed or adjusted by the cue
system. The second approach, tangential trajectory gen-
eration chooses a random location on the opposite half of
the sphere in relative to the current source position, and the
source moves to this location in a duration that is set by the
cue system. The azimuth (azi) and elevation (el) of the
new location is generated using the following formula:

azinew = random(azicurrent +
π

2
, azicurrent +

3π

2
) (5a)

elnew = (elcurrent + random(0,
π

4
)) mod

π

2
(5b)

where the function random(a, b) generates pseudo-random
values in the range of [a, b]. The third approach, random-
walking first generates a step size within a user-set range
using the pseudo-random function. The generated step size
is added to the current location of the source; and thus,
the source jumps to a new location. The steps in random-
walking can be triggered by two ways: using a fixed dura-
tion or using a magnitude spectrum based onset-detection.
In case of MASOM, we apply an additional approach where
the random-walking is triggered with every sample initia-
tion in MASOM. The trajectory generation selections and
their input variables are controlled by the cue system dur-
ing the performance.

6. CONCLUSION

We introduced the live audio-visual performance project
Revive. The medium of this audio-visual performance project
is a dome projection with 3D audio setup where the audio
and the visuals are synchronized in position. Revive fuses
a musical AI architecture into structured improvisation for
audio-visuals. The musical AI in Revive, MASOM em-
ploys Factor Oracle algorithm for temporal content genera-
tion and user interaction. Thomas et al. [22] compare Fac-
tor Oracle, Fixed-Length Markov Model, and MusiCOG
on melody generation and show that these sequence model-
ing algorithms introduces particular biases to the sequence
generation. In our future work, we plan to compare var-
ious statistical sequence modeling algorithms in terms of
sub-sequence cloning, that is how much the model copies
the patterns in the training dataset.

The live performance of Revive benefits from an automa-
tized parameter management using Jamoma’s cue system.
The compositional approaches of Revive allows performers
to improvise within predefined roles. During the develop-
ment of Revive, the task with the highest time-complexity
was the setup and exploration of the mapping between au-
dio features and input parameters of generative visuals. Al-
though several mapping tools have been developed previ-
ously, these tools are not necessarily made for exploration
and comparison of several mapping possibilities. To ad-
dress this issue, several researchers around the globe plan-
ing to collaborate with the OSSIA 13 initiative. OSSIA,
stands for Open Software System for Interactive Applica-
tions, is an OSC-query based open-source framework for
time-scripting and mapping for interactive scenarios. The
framework is currently in its alpha stage, and we hope that
the project will move further in future.

13 https://ossia.io/
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