€Y Routledge

iRkl T g Taylor & Francis Group

i Music REsdascii .
Journal of New Music Research

ISSN: 0929-8215 (Print) 1744-5027 (Online) Journal homepage: http://www.tandfonline.com/loi/nnmr20

Musical agents: A typology and state of the art
towards Musical Metacreation

Kivang Tatar & Philippe Pasquier

To cite this article: Kivang Tatar & Philippe Pasquier (2018): Musical agents: A typology
and state of the art towards Musical Metacreation, Journal of New Music Research, DOI:
10.1080/09298215.2018.1511736

To link to this article: https://doi.org/10.1080/09298215.2018.1511736

ﬁ Published online: 10 Sep 2018.

N
[:J/ Submit your article to this journal &

||I| Article views: 57

BN

(&) View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=nnmr20

http://www.tandfonline.com/action/journalInformation?journalCode=nnmr20
http://www.tandfonline.com/loi/nnmr20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09298215.2018.1511736
https://doi.org/10.1080/09298215.2018.1511736
http://www.tandfonline.com/action/authorSubmission?journalCode=nnmr20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=nnmr20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2018.1511736&domain=pdf&date_stamp=2018-09-10
http://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2018.1511736&domain=pdf&date_stamp=2018-09-10

JOURNAL OF NEW MUSIC RESEARCH
https://doi.org/10.1080/09298215.2018.1511736

Routledge

Taylor & Francis Group

390311Ln0Y

W) Check for updates

Musical agents: A typology and state of the art towards Musical

Metacreation

Kivang Tatar © and Philippe Pasquier

Interactive Arts and Technology, Simon Fraser University, Surrey, Canada

ABSTRACT

Musical agents are artificial agents that tackle musical creative tasks, partially or completely. This
review of musical agents combines the terminology of Generative Arts (artistic practice) and the sci-
entific literature of Computational Creativity, Multi-Agent Systems (MAS), and Artificial Intelligence.
We define Musical Metacreation as a field that studies the partial or complete automation of musi-
cal tasks. We survey seventy-eight musical agent systems, and present a typology of musical agents.
After examining the evaluation methodologies of musical agents, we propose possible future steps

while mentioning ongoing discussions in the field.

1. Introduction

The works of Generative Music rely on autonomous
systems for part or all of their production. One type
of such systems is the automaton, a self-operating
machine that carries out pre-defined procedures. The
first musical automaton, al-Jazari’s water clock, appeared
in the seventh century as a result of advances in
hydraulics (Fowler, 1967). This water clock could gen-
erate music using a mechanical and hydraulic system.
With the onset of the industrial revolution and following
the invention of electricity, automatic musical machines
entered a new phase in their development, and more
musical automata emerged. These included amongst
other the Regina Concert Orchestrion, the Autophone
and the Link Orchestrion. And now, after the digital rev-
olution, artificial agents have become the modern day
equivalent of the automaton.

In the digital age, new autonomous tools and systems
have been emerging in creative applications. Artificial
Intelligence (AI) and Multi-Agent Systems (MAS) are
two examples of fields that provide such autonomous
tools. Simon (1960) defines Al as ‘the science of hav-
ing machines solve problems that do require intelligence
when solved by humans. MAS are distributed/concurrent
systems that are autonomous, able to make indepen-
dent decisions, and run online (Wooldridge, 2009).
Software agents in MAS are autonomous pieces of soft-
ware which contain perception and action abilities.

ARTICLE HISTORY
Received 11 December 2017
Accepted 3 August 2018

KEYWORDS

Musical agents; Multi-Agent
Systems; Artificial
Intelligence; Musical
Metacreation; Computational
Creativity

Applications of MAS are beneficial to modelling and
designing musical creativity because musical creativity
involves distributed, coordinated entities with percep-
tion and action abilities. For example, in a live music
performance, musicians collaboratively create music by
listening to each other. Similarly, we could distribute
composition tasks into such sub-tasks as producing indi-
vidual instrument parts or layers in experimental music
(Roads, 2015).

Our review gives an introduction to researchers and
practitioners who are interested in musical agents. Musi-
cal agents are artificial agents that tackle musical creative
tasks, in part or as a whole, and use the methods of
MAS and Artificial Intelligence to automatise these tasks.
Thus, this topic is naturally interdisciplinary, combining
music, science, design and technology. In this paper, we
present a state of the art in musical agents that utilise
MAS technologies for musical creativity. Three types of
artificial agents appear in the literature: software agents
that are purely computational; virtual agents that are
embodied in a Computer Generated Image (CGI);! and
robotic agents that hold a physical form.? In our survey of

T Please refer to Churchill, and Prevost et al. (2000) and Hartholt et al. (2013)
for an introduction to virtual agents in CGI.

2 Bretan Weinberg (2016) present a state of the artin musically creative robotic
agents.

CONTACT Kivang Tatar @ ktatar@sfu.ca @ Interactive Arts and Technology, Simon Fraser University, 250-13450 102 Avenue, Surrey BCV3T0A3, Canada

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2018.1511736&domain=pdf
http://orcid.org/0000-0003-4133-8641
mailto:ktatar@sfu.ca

Table 1. Musical Agents.

System Architecture # of Agents #ofroles Environment Corpus Input Output Communication ~ HIM MuMe Task Code Public Section
Cognitive Musical 4
Agents
@ VMMAS knowledge Multi-agent/ Multi-role Real-world ~ Symbolic Symbolic Symbolic Env. P Comp., Accomp. Not shared 4.1
representation Heterogenous
@ Inmamusys knowledge Multi-agent/ Multi-role Real-world ~ Symbolic Symbolic Symbolic Mess. C Comp., Accomp. Not shared 4.1
representation Heterogenous
(® Generating Affect knowledge Multi-agent/ Multi-role Real-world ~ Hybrid ~ None Audio Mess. - Comp. Shared 4.1
representation Heterogenous
@ Coming Together ~ BDI Multi-agent/ Single-role Real-world - Symbolic Hybrid Hybrid - Comp. Shared 42
Homogenous
(® Indifference Engine BDI Multi-agent/ Single-role Hybrid - Audio Audio Hybrid P Improv., Comp. Not shared 4.2
Heterogenous
® MUSIC-MAS BDI Multi-agent/ Multi-role Real-world ~ Symbolic Symbolic Symbolic Hybrid C Assisted Comp., Not shared 42
Homogenous Style Im.
@ HsSMM Cognitive Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P+C+L Comp., Assisted Not shared 43
Comp., Cont.
MusiCOG Cognitive Multi-agent/ Real-world ~ Symbolic Symbolic Symbolic Env. P+L Comp.,, Assisted Shared 43
Heterogenous Comp.
©® MAMA Cognitive Multi-agent/ Single-role Real-world Hybrid Hybrid Hybrid Hybrid - Accomp., Improv. Shared 43
Homogenous
Reactive Musical in Real-World 5.1
Agents Environments
Cypher Rule-based Multi-agent/ Multi-role Real-world ~ Symbolic Symbolic Symbolic Mess. C Comp. Not shared 5.1.1
Heterogenous
@ Voyager Rule-based Multi-agent/ Single-role Real-world - Hybrid ~ Symbolic Env. P Improv. Shared v 5.1.1
Heterogenous
@ Bob Rule-based Mono-agent Single-role Real-world ~ Symbolic Symbolic Symbolic Env. P+L Improv.,Melody Not shared 5.1.1
Gen.
@ ARHS Rule-based Multi-agent/ Single-role Real-world - Audio Audio Env. P Improv. Notshared v 5.1.1
Homogenous
LL: Rule-based Multi-agent/ Single-role Real-world - Audio Audio Env. P Improv. Notshared v 5.1.1
Homogenous
@ Virtualband Rule-based Multi-agent/ Multi-role Real-world ~ Hybrid Audio Audio Mess. P+L Style Im, Notshared v 5.1.1
Heterogenous Accomp.
@ Odessa Rule-based Mono-agent Single-role Real-world - Audio Symbolic Env. P Improv. Notshared v 5.1.1
@ Rhythms as--- Rule-based Multi-agent/ Single-role Real-world - Symbolic Symbolic Mess. - Rhythm Gen. Not shared 5.1.1
Homogenous
Virtualatin Rule-based Multi-agent/ Multi-role Real-world ~ Symbolic Symbolic Symbolic Env. P Rhythm Gen. Not shared 5.1.1
Heterogenous
DrumTrack Rule-based Mono-agent Single-role Real-world - Audio Audio Env. P Accomp., Rhythm Notshared v 5.1.1
Gen., Improv.
BBCut2 Rule-based Mono-agent Single-role Real-world Audio Audio Audio Env. P+L Accomp., Rhythm Shared 5.1.1

Gen., Improv.

¥3INDSVd 'd ANV 4VLVLY (%) €

DO 9OBO®® B®OOEBELHEBOO®OE®O

Kinetic Engine
Beatbender
Andante
PIWeCS

CT: Freesound
Curatorial---
ParamBOT
GenJam
automated---
Frank

RGeme

--- Tuning---

Frankensteinian---
Living Melodies
Emergent.--
IMAP

RiverWave

Petri
Swarm Music
Swarm Granulator

Real-time---

Rule-based/EC
Rule-based
Rule-based
Rule-based
Rule-based
Rule-based
Rule-based

Evolutionary
Computation
Evolutionary
Computation
Evolutionary
Computation
Evolutionary
Computation
Evolutionary
Computation
in Virtual
Environments
Evolutionary
Computation
Evolutionary
Computation
Evolutionary
Computation
Evolutionary
Computation
Evolutionary
Computation

Evolutionary
Computation
Ecosystemic

Ecosystemic

Ecosystemic

Multi-agent/
Heterogenous
Multi-agent/
Homogenous
Multi-agent/
Heterogenous
Multi-agent/
Heterogenous
Multi-agent/
Homogenous
Multi-agent/
Heterogenous
Multi-agent/
Heterogenous
Mono-agent

Mono-agent
Mono-agent

Multi-agent/
Homogenous

Multi-agent/
Homogenous

Multi-agent/
Heterogenous
Multi-agent/
Homogenous
Multi-agent/
Homogenous
Multi-agent/
Homogenous
Multi-agent/
Homogenous

Multi-agent/
Homogenous
Multi-agent/
Homogenous
Multi-agent/
Homogenous
Multi-agent/
Heterogenous

Multi-role

Single-role

Multi-role
Single-role
Multi-role
Multi-role
Single-role
Single-role
Single-role
Single-role

Single-role

Multi-role
Single-role
Multi-role
Multi-role

Single-role

Single-role
Single-role

Single-role

Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world

Real-world

Real-world
Virtual ecosystem
Virtual ecosystem
Real-world

Virtual ecosystem

Virtual ecosystem
Virtual ecosystem
Virtual ecosystem

Virtual ecosystem

Audio
Hybrid
Symbolic
Agents

Symbolic

Hybrid

Symbolic

Symbolic
Symbolic
Symbolic

Symbolic

Symbolic

Audio
Audio

Symbolic

Symbolic
Audio

Audio

Symbolic

Symbolic

Symbolic

Computer
Vision

Symbolic
Audio

Hybrid

Symbolic
Audio
Audio
Audio
Audio
Symbolic
Audio
Symbolic
Audio
Audio
Symbolic

Symbolic

Symbolic
Symbolic
Symbolic
Symbolic

Output

Audio
Symbolic
Audio

Hybrid

Mess.
Mess.
Mess.
Hybrid

Hybrid

Mess.
Hybrid
Env.

Env.

Hybrid

Hybrid
Hybrid
Env.
Env.

Env.

Env.
Env.

Env.

P+L

P+L

Rhythm Gen.
Rhythm Gen.
Comp.
Comp.
Comp.
Curation,
Comp.
Curation,
Comp.
Improv.,Melody
Gen.
Improv.
Improv.

Rhythm Gen.

Assisted Comp.

Comp., Assisted
Comp.
Comp., Assisted
Comp.
Rhythm Gen.
Interpretation

Comp.

Comp.
Comp.
Comp.

Improv.

Not shared

Not shared

Not shared

Not shared

Shared

Shared

Shared

Not shared

Shared

Not shared

Not shared

Not shared

Not shared

Not shared

Not shared

Not shared

Not shared

Not shared

Not shared

Not shared

Not shared

(continued).

€ 6 HDYV3S34 DISNINM3AN 40 TYNYNOr

Table 1. Continued.

System Architecture # of Agents # of roles Environment Corpus Input Output Communication HIM MuMe Task Evaluation Code Public Section
Nodal Ecosystemic Multi-agent/ Single-role Virtual ecosystem - Symbolic Symbolic Mess. C Comp. Shared v 522
Homogenous
OSCAR Ecosystemic Multi-agent/ Single-role Virtual ecosystem - Symbolic Symbolic Env. - Comp. Shared v 522
Homogenous
CT: Shoals Ecosystemic Multi-agent/ Single-role Virtual ecosystem Audio Parameter Parameter Mess. - Comp. Notshared v 522
Homogenous
earGram Actors Ecosystemic Multi-agent/ Single-role Virtual ecosystem Audio - Audio Env. C Comp. Notshared v/ 522
Homogenous
pMIMACS Ecosystemic Multi-agent/ Multi-role Virtual ecosystem - Symbolic Symbolic Env. - Interpretation v Not shared 522
Homogenous
SDS Ecosystemic Multi-agent/ Single-role Virtual ecosystem - Symbolic Symbolic Mess. - Melody Gen. Not shared 522
Homogenous
iMe Ecosystemic Multi-agent/ Multi-role Virtual ecosystem - Symbolic Symbolic Env. P Comp., Assisted Not shared 522
Homogenous Comp.
Hybrid Musical 6
Agents
@ POMDP Statistical Mono-agent Single-role Real-world - Symbolic Symbolic Env. P+L Improv., Style Not shared 6.1
Sequence Im.
Modelling
Continuator Statistical Mono-agent Single-role Real-world - Symbolic Symbolic Env. P+L Improv., Style Notshared v 6.1
Sequence Im., Accomp.
Modelling
@ Beatback Statistical Multi-agent/ Single-role Real-world - Symbolic Audio Mess. P+C Rhythm Gen. v Not shared 6.1
Sequence Homogeneous
Modelling
@ Ringomatic Statistical Mono-agent Single-role Real-world Hybrid ~ Symbolic Audio Env. P Rhythm Gen. v Not shared 6.1
Sequence
Modelling
@ Using FO--- Statistical Mono-agent Single-role - Symbolic Symbolic Env. P+L Improv., Style Notshared v 6.1
Sequence Im.
Modelling
OMAX Statistical Mono-agent Single-role Real-world Hybrid Hybrid Hybrid Mess. P+L Improv., Style Notshared v 6.1
Sequence Im.
Modelling
@ Anticipatory--- Statistical Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P+C+L Improv., Style Not shared 6.1
Sequence Im.
Modelling
Improvagent Statistical Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P Improv. Not shared 6.1
Sequence
Modelling
@ Improtek Statistical Multi-agent/ Multi-role Real-world Hybrid Hybrid Hybrid Env. P+C+L Improv,, Style Notshared v 6.1
Sequence Heterogenous Im.

Modelling

¥IINOSVd 'd ANV ¥VLVLY (%)

® ® ® @ ® ® ®

DO@®®OROE®®

@ RO AP

AO

PyOracle

VMO

Filter

SpeakeSystem

ADTK

CinBalada

Reactive
Accompanist

NN music

-« Live Algorithms

.- Automated---

ML.*

Connectionist---

HARP

Jambot

--- Motivation---
Mockingbird

MAgentA
FO with flow
MASC

MASOM

Statistical
Sequence
Modelling

Statistical
Sequence
Modelling

Statistical
Sequence
Modelling

Statistical
Sequence
Modelling

Statistical
Sequence
Modelling

Statistical
Sequence
Modelling

Statistical
Sequence
Modelling

Artificial Neural
Networks

Artificial Neural
Networks

Artificial Neural
Networks

Artificial Neural
Networks

Artificial Neural
Networks

Artificial Neural
Networks

Cognitive

Cognitive
Cognitive
Cognitive
Cognitive
Cognitive
Cognitive

Cognitive

Mono-agent

Mono-agent

Mono-agent

Mono-agent

Mono-agent

Multi-agent/

Heterogenous

Multi-agent/
Homogenous

Mono-agent
Mono-agent
Mono-agent
Mono-agent
Mono-agent
Mono-agent
Mono-agent
Mono-agent
Mono-agent
Mono-agent

Mono-agent
Mono-agent
Multi-agent/
Homogenous
Multi-agent/
Homogenous

Single-role

Single-role

Single-role

Single-role

Single-role

Multi-role

Multi-role

Single-role
Single-role
Single-role
Single-role
Single-role
Single-role
Single-role
Single-role
Single-role
Single-role
Single-role
Single-role
Single-role

Single-role

Real-world

Real-world

Real-world

Real-world

Real-world

Real-world

Real-world

Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world
Real-world

Real-world
Real-world
Virtual ecosystem

Real-world

Audio
Audio
Audio
Hybrid

Symbolic

Symbolic
Hybrid
Symbolic

Symbolic

Symbolic
Hybrid

Symbolic
Symbolic

Hybrid

Audio
Audio
Audio
Audio
Audio

Symbolic

Audio
Audio
Audio
Symbolic
Audio
Symbolic
Hybrid
Symbolic

Symbolic
Audio

Symbolic

Audio

Audio

Audio

Audio

Audio

Audio

Symbolic

Symbolic

Symbolic
Audio
Audio
Symbolic
Audio
Symbolic
Hybrid
Symbolic
Symbolic
Audio

Symbolic
Symbolic
Symbolic

Audio

Env.

Env.

Env.

Env.

Env.

Hybrid

Mess.

Env.
Env.
Env.
Env.
Env.
Env.
Mess.
Env.
Env.
Env.

Mess.
Env.
Mess.

Env.

P+C+L

P+CHL

P+L

P+L

P+L

P+L

P+L

Improv., Style
Im.

Improv., Style
Im.

Improv.,, Style
Im

Improv.

Improv.

Style Im.,
Improv.

Rhythm Gen.

Improv.,
Accomp.
Improv.

Improv.

Improv.,Melody
Gen.
Improv.

Rhythm Gen.

Assisted Comp.,
Improv.
Rhythm Gen.,
Improv.,
Accomp.

Improv.
Accomp.,
Improv.
Comp.
Improv.
Rhythm Gen.

Improv., Comp.

Not shared

Shared

Not shared

Not shared

Shared

Not shared

Not shared

Shared

Not shared
Shared

Not shared

Not shared

Not shared

Not shared

Not shared
Partially shared
Not shared

Not shared
Not shared
Not shared

Partially

<\

N

6.1

6.1

6.1

6.1

6.1

6.2

6.2

6.3

6.3

6.3

6.3

6.3

6.3

6.4

6.4

6.4

6.4

6.4
6.4
6.4

6.4

S 6 HDYV3S34 DISNINM3AN 40 TYNYNOr

6 K. TATAR AND P. PASQUIER

Musical Agents, we focus on purely computational soft-
ware agents, and exclude the virtual agent applications in
CGI, and robotics.

More specifically, the survey covers 78 musical agent
systems compiled in Table 1. Certainly, many more musi-
cal agents have been developed within the artistic prac-
tices. However, we only cover the systems whose details
are given in peer-reviewed publications. The systems are
referenced throughout the paper using the name conven-
tion system-name (D, where the circled number refers to
the system numbers in Table 1. We propose a taxonomy
(Figure 2) that is framed using the terminology of MAS,
AT and Computational Creativity (CC). We incorporated
established dimensions and categorisations of these fields
in our taxonomy rather than coming up with new ones.
We aimed for a terminology that is inclusive of both Gen-
erative Music (an artistic practice) and Computational
Creativity for Music (a scientific research field). In the
next section, we supply a background of these associ-
ated fields. We present a typology of musical agents, and
extend the agent classification of MAS to include the par-
ticularities of musical agents and introduce the various
dimensions of musical agents in Section 3. We subse-
quently group musical agents according to their MAS
architecture, and present details on each system in Sec-
tions 4, 5 and 6. Then, we discuss the evaluation of musi-
cal agents in Section 7. In the last section, we propose
Musical Metacreation as a field that combines science
(Computational Creativity) and artistic practice of Gen-
erative Music; and propose possible future directions in
the field.

2. Generative Art and Computational Creativity

We build our review using the terminologies of Genera-
tive Art, an artistic practice, and Computational Creativ-
ity, a scientific field. Before we start the survey of musical
agents, we would like to introduce the fields that encom-
pass musical agents. We first make a note of two generic
fields, Generative Art and Computational Creativity, then
we continue to more specific fields that are Metacreation
and Musical Metacreation.

The roots of Computational Creativity can be traced
back to Generative Art as well as AI, Artificial Life
(A-Life), Machine Learning and Cognitive Sciences.
Galanter (2003) defines Generative Art
as follows:

Generative Art refers to any art practice where the artist
uses a system, such as a set of natural language rules,
a computer programme, a machine, or other procedu-
ral invention, which is set into motion with some degree
of autonomy contributing to or resulting in a completed
work of art.

Assisted Creativity

<

Purely Reactive

>

Completely Autonomous

Figure 1. The continuum of autonomy.

We observe in this review that some musical agent sys-
tems inherit rules that are strictly defined by their authors
whereas other systems adapt their aesthetics by a learn-
ing process. That is, the degree of genericity varies in
autonomous systems as well as musical agents. The gener-
icity of musical agents thus spans a continuous dimension
that ranges from specific systems to purely generic sys-
tems. Many rule-based musical agents lean towards to the
specific end of the genericity continuum. For example,
Voyager @ includes 15 pitch generation algorithms that
are strictly defined by its creator, George Lewis (2000), as
such strictly implements the aesthetics of its creator. In
comparison, the Continuator (50) can learn the style of any
musician and does not include pre-defined music rules.
The Voyager is closer to the specific end of this contin-
uum whereas the Continuator stands closer to the generic
end.

The notion of autonomy frequently emerges when
we discuss generative systems. As Galanter (2003)’s
definition emphasises, all generative systems posses
a degree of autonomy. Hence, we define a dimen-
sion of autonomy that is continuous, ranging from
purely reactive systems without autonomy to completely
autonomous systems (Figure 1). For example, Mus-
eScore’ is a music notation software. MuseScore only
produces music as a direct result of the user’s input
and is purely reactive. In contrast, the Continuator
autonomously learns from its user’s input and continues a
melody when the user/musician stops playing. The com-
puter assisted creativity would fall in the middle range
of the autonomy continuum. An example of computer
assisted creativity is assisted composition in music (see
Section 3).

Autonomous systems of Generative Art focus on artis-
tic creative tasks. Note that, there are also creative tasks
that are not artistic. For example, creating a culinary
recipe (Amorim, Gées, da Silva, & Franésa, et al., 2017)
is a creative task that is not artistic. The academic field,
Computational Creativity studies computational pro-
cesses for all creative tasks including the artistic ones.
Creative tasks of art and music are different than prob-
lems with optimal solutions. In the case of problems with
optimal solutions, the quality measures are well-defined.

3 https://musescore.org/

For example, we evaluate the performance of a software
agent that aims to optimise fuel consumption, by mea-
suring the actual fuel usage. In contrast, creative tasks of
art and music tackle problems that lack definitive or opti-
mal solutions. The solutions of creative tasks of art and
music have ill-defined quality measures, e.g. there is no
notion of optimal music, nor universal measure of quality
in musical improvisation. Colton Wiggins (2012) define
Computational Creativity as,

The philosophy, science and engineering of computa-
tional systems which, by taking on particular respon-
sibilities, exhibit behaviours that unbiased observers
would deem to be creative.

The research in Computational Creativity mainly cen-
tres around the following three common themes:

- Computational models of (human) creativity: Such
studies research creativity using computational
models. In the case of artificial agents, the pos-
sibilities can also go beyond human capabilities.
For example, Collins (2017) proposes the notion
of a musical agent that listens to more music than
humans could.

- Computational systems for supporting creativity:
These systems are smart assistants for creative appli-
cations. These assistants can suggest solutions and
alternatives to the user by analysing the user’s
behaviour. Musical agents focusing on assisted com-
position are examples of such systems.

- Artificial creative systems: Computational models of
creativity are studied through the development of
artificial creative systems. We propose to define these
systems as Metacreations.

We call Metacreation the domain that both study and
produce systems that partially or completely automate
creative tasks. The notion of Metacreation and Meta-
level creativity was mentioned by many (Boden, 2009;
Buchanan, 2001; Wiggins, 2006a,b) and the term was
explicitly proposed by Whitelaw (2004). The term also
resonates back to the artistic statements (by artists such
as Nicholas Schoffer and James Seawright) in the 1950s
and 1960s (Whitelaw, 2004).

There are two types of creativity that Metacreation
explores. First, the simulation of human creativity is cre-
ativity as it is. For instance, Continuator is a musical
agent that implements musical creativity as it is, by imi-
tating the musical style of a performer. Second, explor-
ing creative processes that humans are incapable of, is
creativity as it could be. For example, Shoals (44) explores
musical creativity as it could be, by sonifying the actions
of a virtual ant colony.

JOURNAL OF NEW MUSIC RESEARCH 7

Building on this literature, Pasquier, Eigenfeldt, Bown,
and Dubnov (2017) define Musical Metacreation as -
a subfield of Computational Creativity that addresses
music-related creative tasks’. We revisit this definition
and we propose that Musical Metacreation is the par-
tial or complete automation of musical tasks. MuMe, as
an interdisciplinary field, is inclusive of all approaches,
studies, domains and practices that automatise musical
tasks. We acknowledge that several other domains also
study the topics of MuMe, and we elaborate on this in
Section 8.4 We propose to define MuMe as a field that
uses the terminology of Generative Art (practice) and
Computational Creativity (science) to cover autonomous
systems of algorithmic music, generative music, machine
musicianship and machine improvisation. The applica-
tions of MuMe use techniques of computational models,
Artificial Intelligence (AI) and MAS to automatise musi-
cal tasks. Musical agents is a sub-category of MuMe,
and in the next section, we delve into musical agents
and the musical tasks that are carried out by musical
agents.

3. Typology of musical agents

A musical agent is an artificial agent that partially or
completely automates musical creative tasks. In the fol-
lowing, we explain the terms ‘musical’ and ‘agent’. We
refer to the term musical in the context of Varése’s Organ-
ised Sound (Varese & Wen-chung, 1966). In this survey,
the definition of music is inclusive of all works that use
sound as a medium. Hence, we also include implemen-
tations of Sound Art, Sonic Arts and Contemporary Art
works using the sound medium.

Although there is no consensus on the definition of
agents in Social Sciences and Philosophy (Emirbayer &
Mische, 1998), an agent is a well-defined term in Com-
puter Sciences. An agent is an autonomous system that
initiates actions to respond to its environment in timely
fashion (Wooldridge 2009). Similarly, musical agents
explore the notions of autonomy, reactivity, proactivity,
adaptability, coordination and emergence. In this survey,
we include musical agents that implement communica-
tion but do not implement machine listening. However,
we exclude musical agents that solely analyse music, and
purely generative systems* that have neither perception
capabilities nor communication abilities. Some musical
agents work offline such as MASC @ while others work

4 Herremans, Chuan, and Chew (2017) recently surveyed purely generative
systems from a conventional music perspective.

8 K. TATAR AND P. PASQUIER

(Agent architectures] Musical tasks

—| Cognitive Composition

i

Number of agents

—| Knowledge Representation | —(Assisted com position)

Multi-agent)

BDI Architecture Interpretation

Cognitive Models Improvisation

Reactive Accompaniment

Homogeneous

Heterogeneous' [Inputhutput)

—| in Real-World Environments | —(Melody generationj

[Number of agent roles)

Rule-based

—| in Virtual Environments | Continuation

Evolutionary Computation | Style imitation

Rhythm generation

[

Ecosystemic Approaches | _(ArrangementJ

Hybrid Curation

—| Statistical Sequence Modelling |

| | Statistical Sequence Modelling
with Rule-based Models

— Artificial Neural Networks |

Cognitive Models

Virtual ecosystem

_| Evolutionary Computation |

_| Ecosystemic Approaches |

Figure 2. The nine dimensions of our musical agents typology.

online such as the Contuniator (50) and the Voyager @
There are also musical agents that learn offline and gen-
erate online such as MASOM .

There is a wide variety of musical agents. We reviewed
78 systems and identified 9 dimensions that form the
typology of musical agents. These nine dimensions are
agent architectures, musical tasks, environment types,
number of agents, number of agent roles, communica-
tion types, corpus types, input/output (I/O) types, human
interaction modality (HIM). This typology is available in
Figure 2 and Table 1.

(1) Agent architectures: Our typology of musical
agent architectures (Figure 2) is based on well-
known agent classifications in MAS and Artificial
Intelligence literature. On the top level of the musi-
cal agent architecture typology, we classify musical
agent architectures using three broad types of agent

Evolutionary Computation | Harmony generation

Single-role systems

Multi-role systems) (Communication)

—(Through the Environmentj

Environment
Open-world| (Human Interaction Modality)
—(Controlled by Humans)

Hybrid —(Playing with Humansj

Real-world

—(Leaming from Humans)

architectures: cognitive, reactive, and hybrid (Rus-
sell Norvig, 2010; Weiss, 2013; Wooldridge, 2009).
Under the agent types, we use architecture model
paradigms as another level of categorisation. This
classification of agent architectures and model
paradigms also serves as the base along which we
discuss our survey of musical agents, and the details
on each agent architecture type are given in the
corresponding sections.

Musical tasks: Musical agents partially or com-
pletely automatise musical creative tasks. So far, we
identified 12 different musical tasks implemented by
musical agents (Figure 2):

- Composition: The artefacts of composition
are sets of symbolic instructions in the case
of musical scores, or audio files in the case
of fixed-media works in electroacoustic music
or acousmatic music. For example, Coming

Together:Freesound @ is a system that gener-
ates soundscape compositions.

Assisted composition systems recommend
musical ideas to composers by automatising any
sub-tasks of musical composition. For exam-
ple, MASC implements Affective Com-
puting with a MAS to recommend melodies
to composers. Also, several composers used
OMAX (54) to recombine and transform musical
material for composition tasks.” .
Interpretation: Performers interpret a set of
musical instructions to produce sounds or gen-
erate audio, which we refer to as interpre-
tation tasks. For example, IMAP evolves
different interpretations of the same musical
phrase using a MAS. Interpretation tasks can
also appear in the musical tasks of symbolic
(notated) music.

Improvisation: We can break down the impro-
visation task into real-time distributed compo-
sition and real-time interpretation tasks. For
example, MASOM (78) performs free improvisa-
tion with or without software and human agents
in the context of experimental electronic music.
Moreover, musical agent improvisation is also
referred to as machine improvisation.
Accompaniment tasks incorporate following
and supporting a leading performer or musical
part. For example, Virtualband @ follows the
eventfulness of a performer’s audio and gener-
ates rthythm, chord progressions and bass parts.
Accompaniment task can appear in composi-
tion, interpretation and improvisation tasks.
Melody, rhythm and harmony generation
tasks appear as sub-tasks of composition,
assisted composition, interpretation and impro-
visation.

Continuation consists of having a musician
play or improvise, and the system taking over
once the musician stops. For instance, the Con-
tinuator is a musical agent that carries on a
musical phrase played by a human performer in
the style of the human performer.

Style imitation: Given a corpus C = Cy,...,
C,, representative of style S, style imitation is to
generate new instances that would be classified
as belonging to S by an unbiased observer (typ-
ically a set of human subjects). For example, the
Audio Oracle is a musical agent that uses

5 Musical

examples of OMAX in practice can be found

at http://repmus.ircam.fr/omax/home

()

JOURNAL OF NEW MUSIC RESEARCH 9

machine listening to imitate the style of another
performer.

- Arrangement: The selection and temporal
ordering of musical material are the main tasks
of musical arrangement. We differ arrangement
from instrumentation which is the assignment
of parts of the music to specific musical instru-
ments. In the case of musical agents, we encoun-
tered only one system, the fourth version of
Coming Together @ that implements arrange-
ment.

- Curation differs from arrangement. Curation
is the selection of agents to perform whereas
arrangement is selecting and ordering musi-
cal material. For example, ParamBOT @ is a
musical agent that curates a selection of musical
agents.

These musical tasks are neither mutually exclusive
nor independent. For instance, a composition task
may include sub-tasks of melody, rhythm and har-
mony generation as in the case of Inmamusys). In
contrast, Coming Together:Freesound (24) also imple-
ments composition tasks, and yet, it does not include
any of the sub-tasks of melody, rhythm and harmony
generation.

Environment types: The literature considers three
types of environments in musical agent systems.
First, the real-world environment is the sound
medium where an agent listens to the sum of all
sounds generated by all agents. For example, in a duo
setting, Voyager @ listens to the human performer
and outputs audio to the real-world environment so
that the human performer can hear. There are three
types of agents in real-world environments: physi-
cal, visual and sonic. Physical agents in real-worlds
are musical robots, and visual agents apply visualisa-
tion of artificial agents. We mentioned that we do not
cover robotic and CGI agents in this survey and we
only cover sonic software agents that listen to either
audio or symbolic music input. Furthermore, there
are two sub-categories of real-world environments:
open-world and close-world. Open-world environ-
ments allow human or software agents to enter
and leave the environment during the generation
stage whereas close-world environments do not. For
example, Voyager @, Odessa and MASOM
listen to the real-world and allow human or software
agents to enter and leave the environment.

Second, simulations of physical environments are
virtual environments. In the literature, musical agent
architectures utilise a virtual environment in three
ways to generate audio: the virtual location of an
agent, the spatial interactions between agents in the

10 K. TATAR AND P. PASQUIER

virtual space, and an agent’s interaction with the
virtual environment such as finding virtual foods.
For instance, the agents in Shoals’ are situated
in a virtual environment where they consume vir-
tual foods. The system generates audio by sonifying
the consumption of food. Also, the agents can cre-
ate groups by communication through spatial inter-
actions in Shoals. Third, the real world environ-
ment affects the virtual ecosystem in hybrid envi-
ronments. For example, the video input in Petri
generates attraction points in the virtual environ-
ment. The agents try to move towards these attrac-
tion points in the virtual environment and the loca-
tion of agents create the audio output. Moreover, the
following properties of MAS environments are also
applicable to musical agent environments (Russell
Norvig, 2010):

— Fully observable vs. partially observable: An
environment is fully observable if an agent can
perceive the environmental properties that are
relevant to the choice of action. An environment
is partially observable if an agent has no capa-
bilities to perceive. For example, an agent in the
system @ perceives only one agent at a time
although there are multiple agents in the system.

- Deterministic vs. stochastic: An environment is
deterministic if the next state of the environ-
ment only depends on the previous state of the
environment and the actions of the agents in the
environment, such as the environment of Beat-
bender . Non-deterministic and partially
observable environments are called stochastic
environments. There are two types of stochastic
environments: stationary and non-stationary.
In stationary stochastic environments, there is
only one stochastic model and the model does
not change. For example, the probability distri-
butions in Virtualband @ does not change dur-
ing the performance. In non-stationary stochas-
tic environments, the stochastic model changes.
The Continuator (50) is an example of an agent in
non-stationary environment because the agent’s
stochastic model, that is the Markov model,
changes continuously.

- Episodic vs. sequential: During each episode,
an agent has a percept input and generates an
action output. In an episodic environment, the
current episode of an environment is indepen-
dent of the previous episodes. For example, each
time GenJam starts playing a chorus, the
solo is independent of the previous choruses’
solo. In a sequential environment, the current
episode depends on the previous episodes. For

()

(4)

(5)

instance, the musical agent applications with
the first or higher order Markov Models have
sequential environments.

- Static vs. dynamic: An environment is static if it
does not change while an agent is deliberating,
else it is dynamic. An example of dynamic envi-
ronment is the virtual environment in Petri @
because the attraction points in the virtual envi-
ronment change independently.

- Discrete vs. continuous: An environment is dis-
creteif it has a finite number of distinctive states,
and continuous if the environment has an infi-
nite number of distinctive states. The applica-
tions with symbolic music representation have
discrete environments when the parameters are
discrete, such as pitch values in MIDI. In com-
parison, an audio environment is continuous.

The number of agents: We group musical agent
systems in two categories with reference to the
number of agents included: mono-agent and multi-
agent. Mono-agent systems include only one musi-
cal agent whereas MAS have many. Although we
approach human performers as agents, we only
include software agents in this categorisation. Also,
we present the interactions of musical agent systems
with humans in the Human Interaction Modality
(HIM) dimension. Human performers can play with
a mono-agent system. For example, the Continua-
tor (50) is a mono-agent system in a duo setting with
a human performer. MAS in which all the agents
share the same architecture are said to be a homoge-
neous MAS. For example, MASOM has a flexible
homogeneous architecture that allows the user to
start more than one MASOM agent for a live per-
formance. A musical agent system is a heterogeneous
Multi-agent system if there are agents with differ-
ent architectures. For example, Cypher (10) is a het-
erogeneous Multi-agent system with multiple agent
architectures.

The number of agent roles: All agents focus on
the same task in single-role systems. In comparison,
there are different roles that agents can take in multi-
role musical agent systems. For example, there is only
one type of agent architecture in iME , and agents
can take the roles of either listener or player in an
episode. Agents in iME can change their roles every
episode.

Communication types: There are three types of
communication in musical agent systems: through
the environment, via messages and hybrid. First,
through the environment communication is related
to the notion of stigmergy. Stigmergy is the indirect
coordination through the environment (Heylighen,

(6)

2016). That is, an action of an agent leaves foot-
prints in the environment. These footprints stim-
ulate the agents in the environment. For example,
ants leave traces when they find food in the envi-
ronment (Sumpter Beekman, 2003). Other ants fol-
low these traces to reach the food. Similarly, musi-
cal agents implement machine listening of the real-
world to communicate through the environment.
For example, let’s assume that a musical agent desires
the ensemble to play louder. An agent expresses this
desire by playing louder sounds instead of sending
symbolic messages to the other agents in the ensem-
ble. The other agents interpret this desire by listening
to the real-world environment.

Second, agents that communicate via messages use
pre-defined, system specific messages. The develop-
ers of musical agents come up with protocols that
specify the type of messages, and how agents send
and receive messages. For example, the agents in
Inmamusys 2) communicate via messages to gener-
ate compositions as notated symbolic music.

Third, both of these methods are used in the hybrid
communication. For instance, Indifference Engine (5
communicates through environment by listening to
a human performer and generating audio, while the
agents in the system communicates through sys-
tem specific messages such as pitch, volume, speed,
tensionCurve, and confidence.

In MAS, the communication between agents includes
negotiation, bargaining and argumentation (Weiss,
2013). An agent’s behaviour can be cooperative or
competitive. For example, playing chess is a compet-
itive behaviour whereas distributed problem solving
is cooperative. Musical agent implementations are
mostly cooperative given that the nature of mak-
ing music is cooperative. Nevertheless, there are also
examples of systems with competitive agents. For
example, agents create social groups in Shoals ,
and these groups compete with each other to find
and consume food in a virtual ecosystem.

Corpus types: A corpus is a set of symbolic music or
audio samples in the case of musical agents. Musical
agents use a corpus as a musical memory and knowl-
edge. We group the corpus types of musical agents
in three categories: symbolic, audio and hybrid. A
symbolic corpus is a set of symbolic representations
of music. In most of the cases, the symbolic rep-
resentation uses MIDI. An audio corpus is a set of
audio samples. The samples in an audio corpus can
range from grains of audio samples to full length
music pieces. A hybrid corpus include a set of audio
files with any kind of symbolic data. For example,
MASOM includes a hybrid corpus, that is, a

JOURNAL OF NEW MUSIC RESEARCH 11

set of audio segments with 18 dimensional feature
vectors.

(7) Input/Output types: We differentiate corpus types
from I/O types. Corpus types are related to the learn-
ing and generation. However, the I/O types clarify
how an agent listens and outputs to the environment.
We observed three types of I/O in musical agents:
audio, symbolic, or hybrid. The audio I/O is the audio
signal perceived and generated by the agents. The
agents with the symbolic I/O use a symbolic repre-
sentation of music, that is, in most cases the MIDI
protocol. Agents with the hybrid I/O use both audio
and symbolic I/O.

(8) HIM: Three types of Human Interaction Modality
(HIM) emerge in musical agents: systems learning
from humans, systems controlled by humans, and
systems playing with humans. Some musical agent
systems learn the style of a human performer or
composer as in the case of the Continuator (50) and
MASOM . Some systems include global vari-
ables that can be controlled by humans as in the
case of Kinectic Engine @ and HARP @ Many of
the musical agents, such as the systems focusing on
machine improvisation in Section 6.1, can perform
with human performers.

In the following sections, we define the agent architec-
tures, group musical agents by their architecture type, and
give details about each system.

4. Cognitive musical agents

Gomila Miiller (2012) define a cognitive system as one
that ‘learns from individual experience and uses its
knowledge in a flexible manner to achieve its goals > Six
aspects of cognitive systems are dealing with an uncertain
world, learning from experience, understanding knowl-
edge, flexible use of knowledge, autonomy and social
abilities. Cognitive agents inherit the properties of both
cognitive systems and MAS. Cognitive models, in com-
parison, are software architectures that specifically model
human cognitive processes. Some examples of cognitive
models proposed in Cognitive Science are Ymir, ACT-
R, Soar, NARS, OSCAR, AKIRA, CLARION, LIDA and
Ikon Flux (Thoérisson Helgasson, 2012). We study cog-
nitive musical agents in three categories in the following
sections.

4.1. Cognitive musical agents with knowledge
representation

A classic paradigm for cognitive agent architectures is
Logic-based agents (LBAs) (Weiss, 2013; Wooldridge, 2009).

12 K. TATAR AND P. PASQUIER

LBAs perceive their environment by building and main-
taining symbolic representations. The environment is
represented as a set of assertions. LBAs reason about
the environment using a set of logical rules and apply
theorem-proving using the knowledge.

A recurrent theme in cognitive musical agents is the
implementation of knowledge representation with a rule-
based agent architecture. Inspired by music theory, the
authors come up with a knowledge representation, and
rules of their musical system. Alternatively, the agents
generate logical assertions and rules using a corpus. In
the following, we survey three systems with knowledge
representations.

Waulfhorst, Nakayama, and Vicari (2003) studied 50
popular songs to devise a table of possible harmonic
transitions. Vicari, Nakayama, Wulfhorst, Costalonga,
and Miletto (2005) continue this work by presenting a
multi-agent system with multiple agent models, called
Virtual Musical Multi-agent system, VMMAS (D. The
application of this system is online music accompani-
ment. Seven types of agent models appear in VMMAS (D:
Cautious (activates only when the agent has a high met-
ric and harmonic confidence degree), Leader (simulates
other agents), Flexible (adapts to the metric changes),
Inflexible (does not adapt to the metric changes),
Persuasive (tries to stabilise around its ‘ideal’ tempo),
Improvising (proposes harmony progressions) and Lyric
(proposes tempo changes). The authors state that agent
models use ‘fuzzy cognition’; however, the authors have
concealed how the fuzzy logic is implemented.

The second system, Inmamusys (2) concentrates
on a two-layer multi-agent system (Delgado, Fajardo,
& Molina-Solana, 2009). All agents in Inmamusys include
a knowledge representation. In the first layer, Inma-
musys @ chooses a composer agent that decides the
number of voices, the timbre of the voices, tonality and
the number of measures. In the second layer, there are
four types of agent models: melody, harmony, accom-
paniment and drums. The system allows a degree of
human control through a graphical user interface (GUI).
In this interface, the user can choose the desired emotion,
instruments and duration of the composition. However, it
is not disclosed how desired emotions are implemented.

The third system is a generative multimedia system (3)
with affective computing (Bizzocchi et al., 2015). This
system generates soundscape, moving images and music.
The affect estimation uses Russell (1980)’s two dimen-
sional (valence and arousal) circumplex affect model. The
system design includes three modules: Re:Cycle, AuMe
(Audio Metaphor) and Musebots (see Figure 3). The
Re:Cycle uses a corpus of moving images with valence
and arousal tags. Re:Cycle module sends the desired
valence and arousal values to AuMe and Musebots. Using

metatags +

valence and arousal pitch set

Musebots

REHO

valence and arousal

Figure 3. The block diagram of the system) in Table 1 (Bizzoc-
chi, Eigenfeldt, & Thorogood, 2015).

a machine learning model (multivariate regression)
for affect estimation in soundscape recordings, AuMe
chooses soundscape recordings with the desired valence
and arousal values. The Musebots module maps valence
(pleasantness) and arousal (eventfulness) to multiple
musical parameters such as musical consonance, melodic
movements and rhythm.

4.2. Cognitive musical agents with BDI architecture

One of the most common cognitive agent architec-
tures is the Belief-Desire-Intention (BDI) architec-
ture (Wooldridge, 2009). The BDI architecture® applies
practical reasoning. Practical reasoning is the goal-
directed selection of actions. There are two aspects
of practical reasoning: deliberation and means-end rea-
soning. Deliberation is the process of deciding what
to achieve. The outputs of deliberation are intentions.
Means-ends reasoning is how to achieve the goal that is
set by the deliberation process. The result of means-ends
reasoning is a plan.

An agent uses its beliefs to represent the state of the
world and the know-how of the agent. Beliefs are dif-
ferent from the knowledge. Beliefs can be wrong and
they are non monotonic. Internal or external perception
update beliefs. Internal perception is the perception of
the agent’s own state whereas the external perception is
the perception of the environment. Reasoning can also
update the beliefs of an agent. There are two families of
reasoning: perfect and bounded rationality. Perfect ratio-
nality is where we assume the logical omniscience of the
agent. In comparison, bounded rationality is the notion
of accepting the finite nature of the resources available for
reasoning.

While beliefs are informational attitudes, the desires
are motivational attitudes. Desires are not necessarily
consistent or achievable. Deliberation is the process of
choosing which desires are to be pursued according to
the current beliefs. The agent generates intentions by
applying a selection function to its desires.

6 Wooldridge (2009) provides the psuedo code of the BDI agent control loop.

Intentions are desires that the agent is committed to
make happen. Agents determine ways to change the state
of the environment so as to make the intentions true.
Intentions provide a filter for the adaptation of the other
intentions that must not conflict. Agents track the success
of their intentions. Agents are inclined to try again if the
attempts to satisfy an intention fail. That is, the intentions
of agents are persistent. Agents believe that their inten-
tions are possible and intentions are not closed under
implications.

Means-end reasoning is to determine how the inten-
tions are achieved. Agents generate a sequence of actions,
that is, a plan. Plans can be deterministic and non-
deterministic. Means-end reasoning generates or selects a
plan to be executed as an attempt to achieve the intention.

We found three musical agent implementations that
use BDI architecture explicitly. The first system (4), pre-
sented as a part of the Coming Together musical agent
series, explores the idea of negotiation between musical
agents (Eigenfeldt, 2010). The communication is hybrid
and through communication, the agents generate their
own goals and create plans to achieve these goals. An
agent in this system desires to create a repeating phrase
that is updated by the communication between agents
and the changes in the environment.

Indifference Engine (5 is the second musical agent
application including BDI architecture with the hybrid
communication (Eigenfeldt, 2014). Each agent gener-
ates an intention graph for pitch, volume and speed at
the beginning of performance. The average of these
three graphs is the tensionCurve of an agent. Indiffer-
ence Engine can run as a mono-agent system, multi-agent
system and multi-agent system including a human per-
former. The data of agents are globally shared; however,
the intentions of agents are private. The agents also nego-
tiate their intentions and argue on choosing a leader. Each
agent follows the leader with a weight parameter called
confidence. The confidence parameter is set by the prox-
imity of the agent to the mean of other agents’ pitch,
volume and speed parameters. The closer an agent is
to the mean, the higher its confidence is. Moreover, the
agents choose to either join the multi-agent ecosystem or
follow the human performer. Also, the agents negotiate
on which audio corpus to use at the beginning of perfor-
mance. The musical agents in this system generate sounds
with concatenative synthesis using CataRT.

The third system with the BDI architecture is MUSIC-
MAS (© (Navarro, Corchado, & Demazeau, 2014;
Navarro et al, 2016). The focus of this study was
assisted composition and style imitation. MUSIC-MAS
generates harmony progressions using organisation-
oriented MAS design to introduce flexibility and scal-
ability to the system design. MUSIC-MAS implements

JOURNAL OF NEW MUSIC RESEARCH 13

a client-server based MAS architecture proposed by
Ferber, Gutknecht, and Michel (2003) including multiple
agent types (Figure 4). ProviderAgent assigns certain
roles to ClientAgents. MUSIC-MAS has five client agent
roles: composer, evaluator, interface, data supplier and
control. Composer agents implement BDI architecture to
generate harmony progressions. Evaluator agents score
the generated progressions using a fitness function that
includes harmony progression constraints. These con-
straints are style specific and the authors state that the
system is flexible enough to imitate any style by changing
the set of constraints in the fitness function. The inter-
face agents handle the interaction with the user. The data
supplier agents collect and store all the data generated
by the system. The control agents are responsible for the
communication and coordination of the agents.

4.3. Cognitive musical agents with cognitive models

Maxwell et al. (2009) propose the framework called
Hierarchical Sequential Memory of Music (HSMM) @.
HSMM is build upon the Hierarchical Temporal Mem-
ory (HTM) (George, 2008). The MuMe applications
of HTM are recognition, generation and continuation.
Following HTM, Maxwell, Eigenfeldt, Pasquier, and Gon-
zalez Thomas (2012) present MusiCOG (8), a cog-
nitive musical agent generating monophonic melody.
MusiCOG is a mono agent system that applies the
MuMe tasks of continuation and assisted composition.
MusiCOG () listens to and learns from a sequence of
MIDI data. MusiCOG consists of four modules: per-
ception module, working memory, cueing model and
production module (Figure 5). The perception mod-
ule implements segmentation as well as the genera-
tion of monophonic MIDI streams from a polyphonic
input. Working memory is the short term memory
that implements grouping of similar patterns. The cue-
ing model is MusiCOG’s long term memory which
learns the hierarchical structures between patterns in the

Roles Agents

Composer Role \

Evaluator

/ Composer Agent 1. Composer Agent 2

Evaluator Agent 1 Ev. Agent 2

\ Ouyimce Agent

Provider Agent
A

oo

Ev. Agent 3

—

Figure 4. An example of role assessmentin MUSIC-MAS (Navarro,
Corchado, & Demazeau, 2016).

14 K. TATAR AND P. PASQUIER

MusiCOG
Working Memory Learning &
N Inference
| Perception — —
| Module - —— E—
Streaming & Segmentation
' Cueing Model
(Long-term Memory)
Production
Module
Input Output

Figure 5. The architecture of MusiCOG (Maxwell,
& Eigenfeldt, 2009).

Pasquier,

working memory. Finally, the production module gen-
erates monophonic MIDI output using the knowledge
representation in MusiCOG.

In regards to communication between musical agents,
Murray-Rust and Smaill (2005), Murray-Rust, Smaill,
and Edwards (2006), Murray-Rust (2008), Murray-Rust
and Smaill (2011) proposed the Musical Acts theory (9
that was inspired by the Speech Acts theory (Kim-
ball, 1975). Murray-Rust and Smaill (2011) propose three
qualities of Musical Acts:

e Embodiment through the production of music,. ..
musical acts must have a manifestation in music.

e Intention is what differentiates a musical act from
general musical playing. A musical act should have
perlocutionary force.

o Intelligibility is necessary for a successful act; if it is
not understood, then it will fail to change the world,
as other musicians will fail to react to it.

The information in Musical Acts is generated by descrip-
tors. A descriptor is a mapping from a facet (an aspect of
music, such as melodic contour, chord, time signature)
to a value. An analyser generates a descriptor in Musi-
cal Acts Theory. The theory also includes a set of per-
formative actions (inform, confirm, disconfirm, extend,
and alter) to create a dialogue between musical agents.
Murray-Rust and Smaill (2011) also present a MAS with
Musical Acts using a symbolic representation of music.
The agents in the MAS were trained on the piece Canto
Ostinato by Simeon ten Holt. The agents analysed levels,
slopes and patterns for note timing, length and loudness
features using the symbolic music.

5. Reactive musical agents

Reactive agents respond to the changes in the environ-
ment without the explicit symbolic reasoning of the type

carried out by cognitive agents. In MAS, there are two
types of reactive agents architectures: reflex and reactive.
Reflex agents do not have any internal states. The per-
ceived states of the environment, percepts cause actions
of reflex agents. Hence, the simplest agent architecture is
a reflex system, that is a function that maps percepts to
actions:

f:P— A

where f is a function, Pis a set of percepts and A is a set of
actions. Unlike reflex agents, reactive agents have internal
states. These internal states are functional as opposed to
cognitive.

A well-known reactive agent architecture is the Sub-
sumption architecture (Brooks, 1986). The Subsumption
architecture is hierarchical with multiple layers. Higher
layers have a higher priority and vice versa. Outputs of
higher layers can restrain, alter, or block outputs of lower
layers.

Moreover, Brooks (1995) discusses four key terms of
the Artificial Intelligence and MAS research: Situated-
ness, Embodiment, Intelligence and Emergence. Situated-
ness proposes that the intelligence is situated in the inter-
action with the environment, responding to percepts in
a timely fashion, rather than reasoning about the envi-
ronment through a symbolic representation. Embodi-
ment is the idea that an agent is an ‘embodied intelli-
gent agent’ and intelligence is situated in the real world
through physical grounding. Brooks (1995) claims that
the interaction between an agent and its environment is
the determinant of the intelligence of an agent. Therefore,
intelligence emerges as a result of the interaction between
the behavioural rules of the agent and its environment.

In the following, we survey 39 systems with reac-
tive musical agents. We group these systems according
to their environment types, reactive musical agents in
real-world and virtual environments. Reactive musical
agents in real-world environments appear in two cate-
gories: rule-based reactive musical agents and agents with
Evolutionary Computation (EC). In the reactive musi-
cal agents in virtual environments, musical MAS sim-
ulate virtual environments to conduct a musical task.
We group the reactive musical agents in virtual envi-
ronments into two categories of multi-agent simulations
with EC and multi-agent simulations with ecosystemic
approaches. We differentiate the reactive musical agents
that use EC to generate musical material from the musical
MAS that use EC to evolve agents. The systems that we
cover in Section 5.1.2 implement EC to generate musi-
cal material within a reactive agent architecture in real-
world environments. We cover Multi-agent simulations
that utilise EC to evolve agents in virtual environments
in Section 5.2.1.

5.1. Reactive musical agents in real-world
environments

We group musical agents in this category in two: rule-
based reactive musical agents, and reactive musical
agents with Evolutionary Computation.

5.1.1. Rule-based reactive musical agents

A recurrent theme in reactive musical agents is the appli-
cation of music theory rules in the design of musical
agents. Rule-based systems apply percept-to-action func-
tions as IF-THEN conditionals. In most cases, these rules
are strictly set by the designer of the system. We start
our survey of rule-based reactive musical agents with the
systems automatising the improvisation tasks.

One of the early musical agent is Cypher , a
rule-based reactive musical agent working with symbolic
representation of music (Rowe, 1992). Cypher is a multi-
role, heterogeneous Multi-agent system. Cypher is also an
example of holonic Multi-agent systems. In holonic sys-
tems, an agent is made of other agents (Minsky, 1986).
In Cypher, the agents are hierarchically arranged and
connected. At the highest level, there are two types of
agents, listener and player agents. First, listener agents
behave similar to the perception modules, analysing the
input data and providing high-level musical information
to player agents. The listener agent is made of the regis-
ter agent, the dynamic agent, the density agent, the speed
agent, the duration agent and the harmony agent. Each
of these agents implement a particular Music Informa-
tion Retrieval (MIR) task. Second, player agents gener-
ate musical output in three ways: transformation of the
input data (symbolic representation of music), triggering
events by using the information provided by the listener
agent, and choosing from a corpus of musical events.
Rowe (1992) also mentions that the listener agents can be
used as critics that analyse the output generated by player
agents. Listener agents as critics report the success of pre-
vious events to player agents. This application of critic
agents is similar to the reinforcement learning in statis-
tical sequence modelling algorithms (see Section 6.1).

Voyager @ is one of the well known musical
agents (Lewis, 2000). Lewis mentions that the first version
of Voyager goes back to 1986. The global behaviour mode
of Voyager determines timbre, volume range, microtonal
transposition, tempo, tactus (underlying, inner pulse),
note probability distributions, pitch interval range, inter-
onset time intervals, pitch set and pitch generation
algorithm. Voyager has 64 MIDI-controlled, mono-
phonic player agents. Depending on the global behaviour
mode, Voyager groups or separates these 64 agents. Voy-
ager changes the global behaviour mode every 5-7s.
The system includes 15 pitch generation algorithms and

JOURNAL OF NEW MUSIC RESEARCH 15

150 microtonal pitch sets. Moreover, setresponse mod-
ule handles the responses to the input data by modifying
the parameters set by the setphrasebehaviour module. As
of 2017, Voyager still performs in various venues. As a
part of the Musical Metacreation concert at ISEA2015
in Vancouver, BC, Canada, Voyager improvised with two
human performers playing prepared piano and clarinet.

Band-out-of-a-Box, Bob @ is another one of the early
reactive musical agents. Bob improvises with a human
performer in the context of jazz and blues (Thom, 2000a,
b, 2003). Bob focuses on the generation of melodies,
specifically solo trading in jazz improvisation. In solo
trading, musicians improvise one by one for a number
of measures. The number of measures is an integer divi-
sion of the total number of measures in a chorus. In
the jazz context, it is common to trade solos in four or
eight measures. Bob improvises with a human performer,
along with a fixed musical accompaniment (Figure 6).
Bob utilises trees to represent a measure, and implements
histograms of the pitch class, intervals and melody direc-
tion to learn the playing modes of the human performer.
The real-time generation of musical sequences is a map-
ping that associates the histogram of feature vectors to
the playing modes of Bob. Bob generates these playing
modes during the learning, and stores them as a knowl-
edge representation. However, these playing modes do
not provide a temporal pitch sequence. To generate a
melody, Bob implements a first-order Markov chain in
which the states consist of an absolute pitch value and a
set of histograms. Thom (2003) also demonstrates Bob’s
performance by training two different agents on Stéphane
Grappelli and Charlie Parker solos.

Adaptive Real-time Hierarchical Self-monitoring
(ARHY) @ emphasises timbre in the reactive musi-
cal agents (Hsu, 2010). The system includes three

Offline Learned
Knowledge (OLK)

Most Recent 1

o 1 Next
Transcribed I Fixed Tempo | t Note Sequence
& Structure

1 to Play

- -

1

|

1

1 Note Sequence !
N -

Audio In

Musician Soloist

Figure 6. Bob's system architecture Thom (2003).

16 K. TATAR AND P. PASQUIER

modules that are Sensing, Synthesis and Processing. The
three module architecture of AHRS resembles Blackwell
et al. (2012) PQf musical agent framework in which P
is the machine listening and analysis; Q is the synthesis
and f implements reasoning and generative functions.
We further discuss the PQf approach in Section 8.4.
The sensing module of AHRS includes pitch, amplitude,
loudness, tempo, auditory roughness and timbre analysis.
The sensing module outputs a performance mode that is
updated every second. Then, the processing module uses
the performance mode to choose sounds. There are two
features in the processing module: short-term respon-
siveness and long-term adaptivity. The system initiates
short-term responses using the Sensing module output
and fuzzy logic. Short-term responses are beginning a
phrase, ending a phrase and changing the timbre. The
long-term adaptivity implements fuzzy sound selection
based on 8-second windows of the Sensing module out-
put. The Synthesis module includes one or more agents.
The Sensing and Processing modules set global variables
for these agents. Agents generate parameter curves to
change pitch and timbre characteristics.
ListeningLearning (LL) is a system that per-
forms with humans in the context of free improvisa-
tion (Collins, 2011). The listening algorithm has three
modules: rhythm tracking, silence detection and timbral
state clustering (Figure 7). The rhythm tracking mod-
ule calculates onset detection, periodicity and inter onset
interval. Also, the rhythm tracking module differenti-
ates free time playing from steady metric tempo. The
silence detection module utilises perceptual loudness.
LL clusters timbral states using the audio feature statis-
tics of cosine basis energy, cosine-wise inter-frame flux,
RMS amplitude, spectral centroid, spectral irregularity
and spectral energy. The author normalises six features
of timbral state clustering using the adaptive distribution
model. The adaptive distribution model uses the statis-
tics of feature vectors to implement a normalisation that
is similar to histogram equalisation in Computer Vision.
LL implements the timbral state clustering using online
k-means clustering with the Euclidian distance metric to
follow the timbral choices of the human performer. LL
includes ten agents to generate output. Each agent corre-
sponds to 1 of 10 timbral states. Only one agent is acti-
vated at a time depending on the timbral state calculated
by the machine listening module. Each agent has a unique
set of parameters for audio synthesis and processing
modules. Each agent has 4 audio synthesis and processing
modules: sample based drum kits, a physical modelling
synthesis of the vocal tract, a 4-voice subtractive synthe-
sis and 50 different audio effects. Collins (2011) states
that using ten agents provides the system the diversity

of responses required for free improvisation with human
performers.

Virtualband @ is a MAS in which musical agents
imitate playing styles of musicians (Moreira, Roy, &
Pachet, 2013). An agent learns from recordings of a musi-
cian to imitate the style of the musician. Each agent is
also provided with a lead sheet including the chord pro-
gression during learning. Hence, agents are also aware
of the harmonic content. Two types of agents appear in
Virtualband: master and slave. Slave agents follow the
master agent’s eventfulness. The master agent can be a
human performer or a software agent. The slave agents
have a hybrid corpus including audio excerpts and the
audio feature distributions of these excerpts. The dura-
tion of excerpts is set to one beat or one bar before the
learning. In the generation mode of Virtualband, a slave
agent generates output by using concatenative synthesis
and chooses audio files to play by following the eventful-
ness of the master agent. Slave agents conduct the follow
role using two mappings: the mapping between audio
feature distribution of the master agent and the audio
feature distribution of a slave agent, that is, feature-to-
feature (f2f) mapping. f2f uses percentile function to
map between two feature distributions. The authors also
present case examples of jazz improvisation, interactive
mash-ups and beatboxing with Virtualband. The advan-
tage of Virtualband is that the symbolic corpus is not
necessarily tied with the audio corpus. That is, we can
use the same feature distributions with different audio
corpora. Examining the example performances of Virtu-
alband, we observe that the algorithm is successful on jazz
improvisation. However, it is not clear why the authors
choose the percentile based f2f mapping. In the exam-
ples of Virtualband, agents are trained on a small corpus,
performances of one or two songs.

Odessa is a reactive musical agent based on the
Subsumption architecture (Linson, Dobbyn, Lewis, &
Laney, 2015). Odessa is a mono-agent system that plays
improvised music using audio input and MIDI output.
Arranged from the lowest to the highest layer, there are
three layers in the architecture: play, adapt and diverge.
The play layer generates the MIDI output. The adapt layer
alters the output of the play layer according to the input
when Odessa listens to other performers using machine
listening algorithms for pitch and loudness estimation in
the adapt layer. The diverge layer constructs higher level
musical section changes.

Following the systems focusing on the improvisation
tasks, we present five systems generating rhythm: @
VirtuaLatin @, DrumTrack , BBCut2 , Kinectic
Engine @ and BeatBender @ Pachet (2000) presents

a rule-based reactive agent @ that generates rhythm

JOURNAL OF NEW MUSIC RESEARCH 17

melody and harmony voices

computer :
___________________________ i
: 10 response agents : |
1 !
1 N
"""""" ST TP R feature-based effects 1
machine listening . ! i
1 h 1 1 :
; 2 . . : 1 choose 1
timbral analysis »| clusterers: playing state | active agent | voeal wsict medel : :
Human Player ; . | —™1 i
active agent (!
onset detection »| thythm analysis T, drum kit : :
I
i
!
i
N
!

Figure 7. The architecture of LL (Collins, 2011).

and harmony progressions. The agents implement two
sets of rules to produce rhythms. The first set of rules
create rhythms from scratch using three rules: empha-
sise strong beat, emphasise weak beat and syncopation. The
second set of rules generate variations of existing rhythms
with three rules: add random, remove random and move
pitch. To generate harmony, the agent applies the same
rules in the vertical dimension (pitch) as opposed to
the horizontal dimension (time). Also, the agents apply
two additional rules (called attraction and repulsion)
in the horizontal dimension (time) to handle harmony
progressions.

Murray-Rust et al. (2005) present another rule-based,
rhythm generating MAS. VirtuaLatin (18) generates tim-
bales accompaniment to Salsa music that is pre-recorded
as MIDI files. VirtuaLatin works offline. The percep-
tion module extracts higher level information from input
data on four dimensions: activity, harmonic informa-
tion, rhythmic information and musical section. The
agents select one rhythm from a corpus using the sym-
bolic representation of the song. The agents apply three
more rules to introduce ornamentation: phrasing, chatter
and fills.

DrumTrack is another musical agent generating
rhythm to accompany a human improvisor (Collins,
2005). DrumTrack focuses more on how to track the
tempo of a human performer real-time using machine
listening. Although the architecture of DrumTrack is
reported as rule-based, the details are not presented.

BBCut2 . is the second version of Collins (2006)
musical agent generating breakbeat. Within our knowl-
edge, the details of the first version are not published.
Breakbeat refers to either a musical section where all
instruments stop and a drum solo begins,7 or the

7 One of the most famous breakbeat sections is the Amen Break, which
is a 4 bar drum break of the song ‘Amen, Brother’ by 1960s soul/funk
band the Winstons. The recording of Amen Break can be found at
http://en.wikipedia.org/wiki/Amen_break.

M

in nonstandard tuning

Audio Input

A

BBCut2 Scheduler

|

Algorithmic Composer

Expressive Timing Deviations

Figure 8. The structure of BBCut2 (Collins, 2006).

electronic music genre in which breakbeat drums are
sampled to make mash-ups. BBCut2 uses machine listen-
ing techniques to analyse an audio signal and implement
beat tracking and segmentation (Figure 8). The agent has
an algorithmic composer module. The rules in the algo-
rithmic composer module include generative streams of
events, static sequences, shuftling the order sequences,
weighted choices, nested patterns and more.

Eigenfeldt (2008) presents the Kinectic Engine @ a
rhythm generator with multiple reactive musical agents.
The Kinectic Engine includes two types of agents: con-
ductor and player. There is only one conductor agent,

18 K. TATAR AND P. PASQUIER

and this agent handles user interaction, identification of
player agents, communication between player agents, and
sending the tempo to the player agents. Eigenfeldt (2008)
implements personality traits to vary the player agents’
behaviours. Personality traits are presets that determine
the density, the amount of rhythmic variation, and tim-
bre of an agent. Player agents decide to play at a certain
time using fuzzy logic. The author proposes two types
of rules to generate rhythms with player agents: den-
sity spread and pattern matching. Moreover, the com-
munication between player agents has two interaction
modes: rhythmic polyphony and rhythmic heterophony.
The player agent decides on the interaction mode by
calculating the rhythmic similarity rating between the
agent’s own output and the other agents’ output. Higher
similarity results in the alteration of generated output to
satisfy rhythmic heterophony. Likewise, lower similar-
ity alters the agents’ generated output towards rhythmic
polyphony. The author develops the Kinectic Engine fur-
ther by introducing Evolutionary Computation to the
system (see Section 5.1.2).

BeatBender models a drum circle with the Subsump-
tion architecture to create emergent musical rhythms
(Levisohn & Pasquier, 2008). Each rule has an antecedent
and a consequent. Antecedents dictate a set of precondi-
tions for a specific rule to be activated. The consequent
is the result of an agent’s actions when a rule is applied.
Each beat, agents decide to play (or not) using their per-
cepts and a set of rules. BeatBender includes four types of
rules:

- Collective: rules that use the total number of active
agents

- Directed: rules that check states of specific neigh-
bouring agents

- Temporal: rules that use the histogram of an agent’s
states

— Undirected: rules that check states of any neigh-
bouring agents.

Following the musical agents applying musical tasks of
improvisation and rhythm generation, we continue our
survey with the remaining rule-based reactive musical
agents. Andante @ is a musical agent framework for
mobile platforms (Ueda & Kon, 2003). The framework is
inspired by the client/server model in MAS. The imple-
mentation rests on Aglets Software Development Kit and
JAVA Sound API. The authors also present a MAS with
agents generating monophonic melodies using different
types of noise such as pink, white and brown noises.
Although the generation is MIDI, there are built in syn-
thesisers that agents can choose from, to generate the
audio output.

Public Space Interactive Web-based Composition Sys-
tem (PIWeCS) is a browser-based multi-agent system
that generates musical compositions (Whalley, 2004).
The system has an audio corpus of Maori instrument
samples. The user can set three variables: unity/variety,
volume and tempo. The interface includes a conversa-
tional model of interaction between the machine and
the user. There are four agent types in PIWeCS: recep-
tion, helper, learner and extender. However, the details of
the system architecture as well as the user interface and
interaction model are not disclosed.

Eigenfeldt and Pasquier (201la) present a unique
application of generative soundscape composition with
MAS including four musical agents, called Coming
Together: Freesound @ The system is a part of the musi-
cal agent series called Coming Together. The agents react
on the environment, and also communicate using the
blackboard architecture to choose sounds to play. The
corpus of an agent is labelled by spectral contents and
the metadata tags of voices, animals, water and outside.
There are three types of agent interactions in this sys-
tem: sharing the metadata tags on a shared blackboard,
reacting to the spectral content of the sonic environment,
or both.

The fourth version of the Coming Together series
includes a musical agent @ that concentrates on musi-
cal arrangement (Eigenfeldt & Pasquier, 2012). The other
agents in the system generate a corpus of musical sec-
tions with symbolic music representation (as MIDI files).
The arranger agent chooses a random musical section
from the corpus, that is, a MIDI file as the first move-
ment. Then, the arranger agent calculates the similar-
ity of the first musical section and the remaining ones
on the dimensions of cumulative density, pitch range
and variation, volume, overall length, specific instrument
presence and harmonic movement. The arranger agent
sorts the remaining musical sections and chooses the
next musical section using Gaussian selection. The agent
repeats this process using the previously selected musi-
cal section. The agent stops when a user-defined duration
has reached.

ParamBOT @ is a curator agent that generates musi-
cal sections of Moment form (Eigenfeldt, 2016a). Param-
BOT initiates or stops other musical agents to create
distinct musical sections. This implementation explores
Stockhausen’s idea of Moment Form in experimental
music. A musical section in Moment form is free of
the previous and next sections. At the beginning of
each musical section, ParamBOT sets global parameters
of speed, activityLevel, voiceDensity, complexity, volume,
consistency, and pitch; and initiates other musical agents
within the Musebot framework (Figure 9). We introduce
the Musebot framework in Section 8.

5.1.2. Reactive musical agents with evolutionary
computation

Evolutionary Computation (EC) is an abstraction of Dar-
winian evolution. EC implements survival of the fittest
to find a solution to a given problem using a popu-
lation of solutions. EC applies the genotype-phenotype
dichotomy. A genotype is a representation of a solu-
tion (phenotype). A fitness function evaluates phenotypes
(solutions) by assigning fitness scores. Genetic opera-
tors, crossovetr, mutation and reproduction, generate new
solutions called offsprings. These offsprings go through
a selection process to create next generations. An EC
algorithm continues evolving a population until stop-
ping criteria are reached (Sivanandam & Deepa, 2007).
EC has been widely used in optimisation problems
such as synthesiser preset generation (Tatar, Macret,
& Pasquier, 2016). Although the problems in MuMe
research do not necessarily involve optimisation, EC has
also been widely used in the MuMe context (Miranda &
Biles, 2007). In this section, we cover musical agents in
real-world environments that use EC to generate musical
material for the agent.

We begin by presenting three systems applying impro-
visation tasks. GenJam is one of the early musi-
cal agent systems (Biles, 1994). GenJam implements
a sub-branch of EC algorithms, called Genetic Algo-
rithms (GAs) to generate melodies. GenJam improvises
Jazz Music using an Interactive Genetic Algorithm (IGA)
that generates musical phrases using a symbolic represen-
tation of music (MIDI). In IGAs, the user evaluates and
scores all individuals in the GA population every gener-
ation. GenJam concentrates on jazz improvisation over
a given chord sequence. Learning, breeding and demo
are the three modes of Genjam. In the learning mode,
a human listener gives real time fitness scores to Gen-
Jam’s musical phrases. The listener labels the GenJam’s
current solo with the labels ‘g’ and ‘b’ that stand for
‘good’ and ‘bad’ respectively (Figure 10). In the breed-
ing mode, GenJam implements genetic operators on the
population of musical phrases. GenJam replaces half of
the population every generation with new offspring using
crossover and mutation. In the demo mode, GenjJam
improvises on a Jazz tune, using a chord progression
file. Although Biles (1994) does not present GenJam as a
musical agent, we can analyse the system architecture as a
musical agent, with inputs of chord progression, rhythm
section and human evaluation of the generated phrases,
and with an output of solo jazz improvisation. Biles, who
is also a trumpet player, presented GenJam in numer-
ous concert venues as GenJam being another jazz player
(Biles, 2013).

The following two systems that apply improvisation
tasks imitate the style of human performers using EC:

JOURNAL OF NEW MUSIC RESEARCH 19

ParamBOT

06.18.16 arne eigenfeldt

duration (sec): 600

| play | generate
section progress: elapsed time: 00:00
| section: 0

dynamic Parameter Probability: L

© # of sections: 7
) . 5 shortest 14. 30.
relative Proportions: sections: (secs): 66. 89.
| O 90.

U —

Figure 9. ParamBOT, a curator agent implemented using the
Musebot framework in MAX (Eigenfeldt, 2016a).

Bassseq Solo Ig’/lb’
MeasurePop
[PianoSeq—#> GenJam
/ PhrasePop
DrumSeq Progression

Figure 10. The block diagram of GenJam (Biles, 1994).

the system and Frank . Yee-King (2007) study

comes forward with a unique implementation of evolving
timbres, rather than evolving symbolic representations
of music. Yee-King (2007) presents a reactive musical
agent for live performances with human perform-
ers. This study also implements IGA with the Java pro-
gramming language and embeds SuperCollider’s scsynth
framework for sound synthesis. The agent records the
pitch and amplitude information of the live input to
its memory to imitate the improvisation of other per-
formers (Figure 11). The implementation includes two
audio synthesis techniques: Additive Synthesis and Fre-
quency Modulation (FM) synthesis. A control data of
pitch and amplitude provided by the memory of the

20 K. TATAR AND P. PASQUIER

agent manipulates the parameters of these synthesisers.
The IGA optimises the timbre of the audio synthesis to
match the agent’s timbre to the other performers. The
author presents the initial results of this system, without
recombination in the genetic algorithm. Hence, breeding
is mutation only in the initial experiments. The author
also comments on the improvisational skills of the agent,
saying that the agent has a ‘responsive feel’ with ‘unique
dynamic sound .

Frank is a musical agent that evolves lexemes
to imitate a human performer (Plans & Morelli, 2011).
Lexemes are clusters of MPEG7 vectors® The clustering
method of Frank is k-NN and the cluster locations are the
centroid vectors. EC implementation includes two gen-
ders: male and female. Frank introduces the input frames
as new female individuals to the population. During
reproduction, the offspring gender is set to either male or
female randomly. The authors clarify that female agents
function as critic agents and the implementation of two
genders introduces criticism to the system. The fitness
function uses Euclidian distance between the input frame
vector and an individual with an application of impre-
cise pattern matching with weight matrices. To implement
imprecise pattern matching, the authors utilise a similar-
ity threshold that female individuals use to choose a male
individual to mate. The authors state that this balances
coherence and novelty in the system. Frank plays back
winner frames from the population.

The next two applications implement MAS with EC to
generate rhythms. Gimenes, Miranda, and Johnson (2005)
implement Dawkin’s idea of memes in reactive musical
agents. The system is called RGeme @ and the MuMe
application of interest is rhythm generation with sym-
bolic representation. RGeme includes three types of agent
tasks: listening, practicing and composing. The listening
and practicing phases constitute the learning whereas
composing is the generation. Each agent also has an eval-
uation algorithm to choose which music files are used in
the learning tasks. During the learning, agents generate
a Style Matrix in which the rhythmic memes are stored.
The weights of rhythmic memes are determined by the
number of times it is encountered and in which listening
cycles it is encountered. To introduce temporality to the
agent memory, rhythmic memes also lose weight if they
are not encountered in later listening cycles. The authors
also present an analysis of case studies in which agents
are trained with Brazilian music composed by Chiquinha
Gonzaga, Ernesto Nazareth, Jacob do Bandolim and Tom
Jobim. The generation phase was not implemented in
this version. In the following years, the generation phase

was also implemented and this system is used as the
brain for a robotics implementation (Gimenes, Miranda,
& Johnson, 2007). However, we exclude robotics imple-
mentations in this review.

The latest version of Kinectic Engine @ also applies
rhythm generation with EC (Eigenfeldt, 2009, 2011).
This study aims to generate rhythms that continuously
evolve, rather than rhythms emerging, or appearing.
Eigenfeldt (2009) states that EC provides a musical mem-
ory; and thus, introduces temporality. The system analy-
ses a corpus of rhythms (MIDI files) offline. Moreover,
Kinetic Engine analyses the individuals in the popula-
tion on two musical dimensions: density (the number of
events) and complexity (the degree of syncopation). EC
in Kinectic Engine implements Roulette Wheel Selection,
a well-known selection algorithm in EC (Sivanandam
Deepa, 2007). The author mentions that Kinectic Engine
includes a crossover-like breeding using a single parent;
however, the details of this crossover-like breeding are
not disclosed. The system also implements mutation. The
population of rhythms is provided to all player agents.
A player agent chooses individuals (rhythm patterns) in
the population using user-set global density and com-
plexity parameters (Figure 12). The player agent utilises a
k-nearest algorithm to find rhythm patters with the user-
given density and complexity values in the population.
Eigenfeldt Pasquier (2009) present artistic implementa-
tions of the system along with the artistic evaluation
of Kinectic Engine, concluding that following versions
of the system should introduce ‘intelligent’ melody and
harmony generation.

Aucouturier (2011) implements a multi-agent soci-
ety @ to evolve tuning systems. The fundamental fre-
quency and the timbre are the global variables of the
system. The agents include a dissonance calculation for-
mula that is the parameterisation of the experimental
Plomp-Levelt curves.” Each agent has a tuning system
with the same number of notes. One agent listens (tuner
role) while the other plays (player role). The tuner agent
tunes its notes by minimising the dissonance between the
player agent’s note and its scale. There are two types of
interactions between agents: single note shift and drone
shift. In single note shift, the player agent chooses a ran-
dom note to play and the tuner agent tunes one note that
is chosen randomly. In drone shift, the player agent plays
one note and the tuner agent tunes all notes in its memory
by minimising the dissonance. The environment includes
two types of timbres as global variables: harmonic timbre
(where the partials are the integer multiplication of the
fundamental frequency) and compressed timbre (where

8 MPEG 7 is a standardisation of low-level feature calculation and thumb-
nailling for multimedia.

9 Given a root note, Plomp-Levelt curves were proposed to calculate conso-
nance or dissonance of any other note to the root note (Plomp Levelt, 1965).

the partials are spaced narrowly as stated by a geometric
law).

5.2. Reactive musical agents in virtual
environments

A recurrent theme in musical agent studies is the appli-
cations of self-organising agents that situate in virtual
environments. The authors define the dimensions and
properties of virtual environments. Systems generate
music using the spatial orientation of agents and/or vir-
tual encounters between agents. This data is mapped to
parameters of audio synthesis, or symbolic representa-
tion of music. Hence, the complex behaviours in a virtual
environment create music.

Bown, McCormack, and Kowaliw (2011) propose five
elements of ecosystemic creative domains: space, materi-
als, features, actions and processes. In ecosystemic creative
domains, an agent situates in space, perceives the envi-
ronment using features, performs actions using materials
and the environment changes due to processes. In the fol-
lowing sections, we categorise musical agents in Virtual
Ecosystems in two groups.

5.2.1. Multi-agent simulations with evolutionary
computation

In this section, we cover musical MAS in which the
system uses EC to evolve agents. Following, we present
two implementations of melody generation. Todd and
Werner (1999) present a system @ that evolves mono-
phonic melodies through agent interactions. The imple-
mentation is inspired by mating calls and singing rit-
uals of wild animals in nature. There are two types of
agents, referred by the authors as male/composer and
female/critic. Male agents have a 32 note melody that
spans two octaves. Each female agent includes a Markov
model transition matrix indicating the probabilities of
note transitions to rate the melodies of male agents. Each
female listens to a subset of randomly selected male
agents. After listening to all male agents in the subset,
female agents choose one male agent to mate. The sys-
tem uses crossover and mutation operators to generate
offspring. The selection process of this system is not
disclosed.

Similarly, Living Melodies (34) is a musical agent system
that is also inspired by mating calls in nature (Dahlst-
edt & Nordahl, 2001). There are two genotypes in Living
Melodies: sound and procedural genotype. Sound geno-
type dictates how an agent listens to other agents and
how an agent generates sound. Procedural genotype des-
ignates how an agent interacts with and traverses in the
ecosystem. The agents born when two agents mate, but
there are no genders in the system. The system creates

JOURNAL OF NEW MUSIC RESEARCH 21

the genome of offspring using crossover and parents’
genome. Moreover, each agent is born with an energy
level. The agents loose energy points as they act within
the environment. An agent dies when its energy level is
below a threshold or a global, preset maximum life span
has been exceeded. There are different configurations of
sound mapping in the system. The agents generate mat-
ing calls as MIDI outputs using the information coded in
their genome and communicating with other agents. The
authors reported that the system can generate recurring
patterns.

Martins and Miranda (2007) presented a system @
that generates rhythmic phrases. This implementation
focuses on the abstraction of music as a cultural phe-
nomenon driven by social pressure (the system number
31 in Table 1). Although this study includes an A-life
algorithm rather than EC, the ideas of survival of the
fittest, breeding and assessment of a fitness score also
appear in this implementation. The system includes a
population of agents that are identical in the system archi-
tecture. The agents situated in a 2D space in which they
interact with each other. Each agent has a memory of
rhythmic phrases. During each interaction, one agent
takes the role of player and the other takes the role of is-
tener. As a consequence of the interaction between two
agents, each rhythmic phrase of the player agent is given
a popularity score by the listener agent. If the listener
agent recognises a rhythm of the player agent, the listener
agent gives a higher score to that rhythm, or vice versa.
Moreover, the popularity of all rhythms drops by 0.05
after each interaction to introduce aging to the system. A
transformation algorithm is applied to each rhythm that
is shared between two agents during an interaction to fos-
ter novelty in the system. Martins and Miranda (2008)
further analyse the system measuring the similarity of
rhythms. The analysis includes size and complexity of an
agent’s thythm memory, the similarity and clustering of
agents, lifetime and novelty of generated rhythms. The
authors state that the system exhibits ‘the emergence of
coherent repertoires across the agents in the society’ in
which the size of an agent’s memory can be controlled
using the popularity parameter.

Miranda, Kirke, and Zhang (2010) present a system
that evolves expressive performance of music using an
imitative multi-agent system, called Imitative Multi-agent
Performer (IMAP). The authors define expressive
music performance as the performance strategies that
are not explained in the score, also known as the prob-
lem of interpretation in the context of MuMe. IMAP
uses an imitative model of behaviour transmission, that
is similar to the GA model of behaviour transmission.
In both of these models, the algorithms generate a pop-
ulation of agents whose behaviours are defined by a

22 K. TATAR AND P. PASQUIER

genetic code. The difference between these two mod-
els is that the GA model uses a global fitness function
whereas the imitative model has an non-global fitness
function where each agent has a different fitness func-
tion. In the imitative model of behaviour transmission,
an agent shares its behaviour to the other agents. Agents
evaluate this behaviour using their fitness function, and
if the behaviour scores high enough, the behaviour of
the evaluating agent is updated accordingly. Hence, an
agent has two functions: performance and evaluation.
The parameters of the interpretation task are tempo and
the loudness deviations. The fitness function is rule-
based, implementing five rules of performance curves,
note punctuation, loudness emphasis, accentuation, and
boundary notes. The rules have weights that are particu-
larly set for each agent. These weights make agent’s fitness
function unique.

Another implementation that combines biologically
inspired algorithms with MAS is River Wave @ (McCor-
mack & Bown, 2009). The researchers explore the idea
of niche construction in ecosystem modelling to create
digital art and music. Niche construction is the phenom-
ena of organisms establishing a more habitable environ-
ment for their offspring, which can also be approached
as a process that precedes the evolution. The cooperation
between agents becomes more prominent since parents
aim for more habitable environments for their offspring.
The musical agent system, RiverWave is a one dimen-
sional, toroidal ecosystem that controls an additive syn-
thesiser. Each agent location determines the frequency of
the oscillator. Each agent has a height variable and agents
affect the height of the neighbouring agents. The height
parameter of an agent is mapped to the amplitude of the
oscillator.

peessssscsssscsnaann
'
'

FITNESS FUNCTION

HE H
‘] '
AUDIO ANALYSIS FOR GA i s Render evolved synth output 4
: : i to disk for analysis E. :
! AUDIO;OUTPUE ; —3>! Spectral analysis |<€< . o
A :_ ______________________ : ! . Compare evolved spectrum to . !
e o incoming spectrum and I
[. . '
H assign fitness i '
Live performer o N
b s T
' 1 BREEDING - '
: ! STRATEGY A
INCOMING SPECTRUM l Make the next generation of A
. i synthsbased on fitness data F
. = : i
EVOLVED SPECTRUM . : N
T T DPRTETTITS T T PR ; e R
! AUDIO ANALYSIS FOR PLAYBACK : : :
: . . : E :
: Pltch analysis HI CONTROL DATA STORE : POPUEATIONOF -
: H > - note sequence : EVOLVED SYNTHS i
H i - amplitude sequence . .
! Amplitude analysis . O LR LR L ----------------- '
; ; U e :
................................ i\ PLAYBACK SYSTEM H
: H
P R periodically take data .
g from the control data store :
: H
: L :
4 Create a synth with the current !
: fittestevolved structure to play <
' a soundusing this control data :

Figure 11. The system architecture of Yee-King's (2007) musical agent.

Analysis
_

>

XML _ . P .
analysis file > Population | Generation

Initialisatiol Replacement
e
\ 4
Performance === Selection
(culling)

Figure 12. The block diagram of Kinectic Engine version 3
(Eigenfeldt, 2009).

Physical world Synthetic world
Human Computer Artificial
Agents Vision Agents

A
Audiovisual
-
Feedback

Figure 13. The system design of Petri (Beyls, 2012).

Petri is an interactive audio-visual system that
utilises a virtual environment and the real-world inter-
actions (Beyls, 2012). The reactive agents situated in
a virtual environment while the parameters of vir-
tual environment change with a computer vision input
(Figure 13). A webcam input is processed with a com-
puter vision algorithm that provides five visual features to
the virtual environment. These features define attraction
points in the virtual environment. The agents move closer
to these attraction points. There is also a life cycle that
each agent goes through. New agents are created closer
to the attraction points. The reactive agents have gen-
ders and communicate with each other. The communi-
cation between neighbouring agents results in the sound
generation. When agents decide to generate sound, the
location of the agent defines the synthesis parameters.
The 2D virtual environment is mapped to the FM syn-
thesis parameters of carrier frequency and modulation
frequency.

5.2.2. Multi-agent simulations with ecosystemic
approaches

Blackwell Young (2004) present two applications of
swarming in symbolic music generation. Swarming is a
multi-agent behaviour that is inspired by the behaviours
of animal herds like birds, fishes and insects. The
behaviours emerge as a result of four rules: agents try
to move closer to neighbouring agents, neighbouring

JOURNAL OF NEW MUSIC RESEARCH 23

agents avoid collisions, all agents try to match velocity
including the direction, all agents try to move towards
attraction points. Likewise, self-organisation has four
components: positive feedback, negative feedback, ampli-
fication of fluctuations and multiple interactions. Swarm
Music and Swarm Granulator are ecosystemic
reactive agents where the agents situated in a virtual envi-
ronment. In Swarm Music, the authors propose a map-
ping between the spatial locations of agents and symbolic
music parameters of pitch, loudness, inter-onset inter-
val, duration, chord number and sequence number. The
authors also propose the idea of using two swarms for
symbolic music generation where the spatial locations of
one swarm are the attraction points of another. In Swarm
Granulator, the agent records the human performer in an
audio buffer while calculating the audio features of the
pitch, amplitude, duration and duration between succes-
sive sound-events. The swarming outputs six parameters
audio buffer transposition, amplitude, duration, the time
between successive grains, grain attack and decay time.

Ando and Iba (2005) propose a musical agent sys-
tem including a virtual environment in the appli-
cation of extended instrument design. Although the
authors claim that the system is a cellular automata imple-
mentation that includes a MAS, the details of the system
design is not disclosed. Ando and Iba (2005) say that the
states of agents in the cellular automata change according
to some pre-defined rules while a human performer plays
a MIDI keyboard. The details of these rules are also not
presented in the study.

McCormack, Mcllwain, Lane, and Dorin (2007) pro-
pose aunique idea of using a 2D virtual environment with
musical agents as a dynamic graphic score that gener-
ates music. The name of this framework is Nodal (42) and
available as a commercial software.!® Users create a vir-
tual environment using nodes, edges, node traversals, and
player agents. Users put nodes in the environment and
create connections between these nodes. These connec-
tions are called edges. Player agents traverse the nodes and
edges. Each time a player agent reaches a node, the agent
plays a MIDI note and changes its state variables (lists of
pitch change, note-on, and note duration, MIDI instru-
ment). The authors also give examples of bi-directional
and asymmetric cycles, and cyclic pitch phasing as the
examples of emergent behaviours in Nodal.

OSCAR is a MAS with reactive agents situat-
ing in a virtual environment (Beyls, 2007, 2011). This
application focuses on the problem of generating non-
idiomatic improvisation (a.k.a. free improvisation) with
the symbolic representation of music. This study focuses
on autopoiesis; that is ‘the continuous creation of new

10 http://www.nodalmusic.com/

24 K. TATAR AND P. PASQUIER

answers while facing an unpredictable environment’.
Agents situated in a 2D environment having parameters
of physical position, energy level, distance of communica-
tion, distance of neighbourhood, activation, orientation,
affinities and personality dataset of pitch intervals, dura-
tions and velocities. The system tries to minimise overall
social stress by using affinities between agents. The sys-
tem generates musical output using the histogram of
agent communications on each iteration. An agent that
initiates a musical event generation chooses one of two
methods: contraction, and expansion. Contraction gener-
ates a single musical event using a set of events, whereas
expansion generates supplementary events using a single
source event. The authors also presented three experi-
ments with the systems to show emerging patterns. The
system presented periodic patterns running over longer
durations as well as complex behaviours.

Eigenfeldt and Pasquier (2011b) use Concatenative
Synthesis with an ecosystemic MAS. The authors pro-
posed the idea of generating music through consumption
of virtual food in a virtual environment. The system is
referred as Shoals that is a part of series of gener-
ative music systems, called Coming Together. The sys-
tem uses Concatenative Granular Synthesis with CataRT,
an external library that is available in the visual pro-
gramming language MAX. The real-time audio feature
extraction of audio input creates food in the virtual envi-
ronment that agents situate. The agents can move within
the virtual environment. As an agent finds and consumes
food, the consumption is sonified using CataRT. The
agents are randomly initialised with synthesis parameters
of grain duration, delay between grains, amplitude, off-
set into the sample, phrase length, pause between phrases,
phrase type, output, and with MAS parameters of acqui-
escence (desire to stay at the location of a food source),
and sociability. Agents have a histogram of encountered
food sources. This histogram affects the decision of an
agent’s movement. The audio input is recorded into an
audio buffer when it is not silent. The existence of sound
in the audio input also creates excitement in the vir-
tual environment and the agents start moving at faster
rates. There is also communication between the agents.
When an agent finds a food source, the agent shares the
location of the food source. The agents die if they can-
not locate a food source for a certain time. The death
agents are reincarnated after a variable duration that is
between 5 and 60 s. The agents create social networks by
sending ‘friend requests’ and using the sociability ratings.
The agents can also leave a network to join a bigger net-
work. Eigenfeldt and Pasquier (2011b) stated that even
when the agents find a food source, and the network
becomes static, the social networking still create dynamic
behaviours.

Beyls, Bernardes, and Caetano (2015) presented a
MAS implementation focusing on a cultural phenomena.
The system, earGram Actors is based on the Actor
model (Beyls, 2011) which is a derivation of the Party
Planner model (Gold & Maeda, 2007). In the actor model,
the reactive agents aim to be as close as possible to the
agents that they like (and vice versa) to minimise the
social stress of the society. The actor model works on two
dimension affinity and sensitivity. Affinity is pre-set and
dictates the attraction of an agent towards another. Sensi-
tivity sets a distance threshold to apply affinities of agents.
This simple abstraction of a virtual society creates com-
plex movements of agents in the virtual environment.
This MAS implementation uses a hybrid audio corpus.
The corpus consists of 200 ms long audio samples, and
the samples are mapped to a 2D space using dimen-
sionality reduction on a set of audio features, including
noisiness, pitch, brightness, spectral width and sensory
dissonance. Then, this 2D audio feature space is mapped
to the 2D virtual environment. Hence, the movements of
agents in the environment create musical output with the
concatenative synthesis.

Likewise, pMIMACS is an ecosystemic MAS that
generates symbolic music with interpretation (Kirke
& Miranda, 2011). Each agent has the same archi-
tecture and has a tune in the memory. The agent
with similar tunes performs to each other during each
cycle. When an agent performs to another, the listen-
ing agent learns the interpretation of the other agents
tune. There are four dimensions of the interpretation
in pMIMACS: accuracy/tempo, excitation state, key and
microerrors.

Al-Rifaie and Al-Rifaie (2015) present a MAS
generating musical melodies with symbolic represen-
tation. This implementation also uses a swarm intelli-
gence algorithm, Stochastic Diffusion Search (SDS) that is
inspired by one species of ants, Leptothorax acervorum.
In SDS, the agents situated in a search space and commu-
nicate with one another directly. SDS has two phases: test
and diffusion. During the test phase, each agent imple-
ments exploitation. If an agent finds a better solution, the
agent is considered happy. During the diffusion phase,
each agent talks to another agent that is randomly chosen.
If an unhappy agent talks to a happy agent, the unhappy
agent is considered lucky, and the happy agent shares its
location with the lucky agent. In each iteration, the num-
ber of local unhappy, and lucky agents are stored for the
sonification. The focus in this implementation is generat-
ing musical scores that sonifies the agent communication.
The system uses plain texts as an input, and the letters are
mapped to pitch, note duration and dynamic. The popu-
lation size is 20, and the number of iterations (episodes)
is 10. The authors exemplified this implementation with

a melody generated by the text ‘hello music sds welcome
to the reality’

Similarly, Gimenes and Miranda (2011) applied cul-
tural ecosystem approach in the design of Interactive
Musical environments (iME). iME concentrates on
monophonic melody generation. The system design
applies the ideas of ‘memetics’. Memetics (as in genet-
ics) is the idea that the development of cultural organisms
is through the smallest functional units that are memes
(as in genes). The authors propose the term ontomemetic
(inspired by ontogenetic) that is ‘the sequence of events
involved in the development of individuals musical-
ity The authors also point out the characteristics of
ontomemetic systems:

(1) Modelling cognitive and perceptive abilities of
humans,

(2) Using the interaction between artificial entities to
create emergency

(3) Modelling interactivity through the communication
between artificial entities

(4) The availability of comparison of different musical
styles generated by an application of ontomemetics

iME applies ontomemetics to monophonic melody
generation using a feature extraction on MIDI data. The
features are melodic direction, melodic leap, inter-onset
interval, duration, intensity and vertical number of notes.
iME has a virtual ecosystem in which agents listen each
other. Each agent has the same architecture. One agent
takes the role of player whereas the other takes the role
of listener. The agents have two types of memory: long-
term and short-term. The long term memory stores all
unique memes that the agent encounters. Each meme
has a connection pointer that is the index of the succes-
sor meme. Each meme has a weight that increases as the
agent encounters a meme more. In that sense, this struc-
ture resembles a first-order Markov model. Short-term
memory only saves a user-defined number of memes that
the agent encountered the latest. The system is capable to
generate music as using solo agents, as well as collective
improvisation. The generative algorithm includes a pre-
set compositional and performance map that guides agents
to choose memes.

Our survey of cognitive and reactive musical agents
finishes here. We continue by reviewing musical agents
that combine cognitive and reactive modules together in
their system design.

6. Hybrid musical agents

Hybrid agent architectures include both reactive and
cognitive modules together. Following, we discuss four
subcategories of hybrid musical agents.

JOURNAL OF NEW MUSIC RESEARCH 25

6.1. Hybrid musical agents using statistical
sequence modelling

A recurrent theme in hybrid musical agent studies is
the implementation of statistical sequence modelling
algorithms such as Incremental Parsing (IP), Probabilis-
tic Suffix Trees (PSTs), Factor Oracles (FOs), Partially
Observable Markov Decision Processes (POMDP), Vari-
able Markov Models (VMM), Hidden Markov Models
(HMM). Many systems presented in this section use
Markov Decision Processes or Markov Models or Markov
Chains.

Markov Models are finite state machines that encodes
patterns os transitions between discrete states using the
Markovian assumption. The Markovian assumption of an
N order Markov model is,

P(stlst—1,5t—25 ... 581) = P(s¢[St—15 - - s Smax(t—N,1))-
(1)

The order of a Markov model dictates how many pre-
vious states to be considered to predict and generate the
next state. Moreover, the conditional probabilities of the
transitions depend on the observed number of transitions
between the states.

The environment is discrete and stochastic in Markov
Models (Puterman, 1994). The environment is stochastic
because given a particular state, the resulted next state of
an agent is not certain. Specifically in Markov Decision
Processes, we can define a probability function p(s'|s, a)
where s is the current state of an agent, and a is an
action. Reward function, r(s, a), evaluates an action, a,
performed in a particular state, s. Policy (or decision rule),
d, is an assignment function, d : S — A, where S is the
set of all possible states and A is the set of all actions that
are available to an agent. Hence, a policy specifies which
actions should be performed in which states. In Markov
Models, value iteration algorithm defines how to find
an optimal policy (Puterman, 1994). Moreover, Markov
Models can apply learning. Agents generate the transition
probabilities between states during learning. For exam-
ple, Martin, Jin, van Schaik, and Martens (2010) imple-
ment Partially Observable Markovian Decision Processes
(POMDP) (49) in the design of a hybrid musical agent that

listens to human performers (the system). The system
generates melodies in the key of the human performer
using tonal harmony theory in music.

The initial experiments on using statistical sequence
modelling algorithms for music focused on how to cre-
ate optimal tree form representations using compression
algorithms for online applications of music. Two early
works (Assayag, Dubnov, & Delerue, 1999; Dubnov,
Assayag, & El-Yaniv, 1998) concentrated on generating
sequences of melodies using Lempel-Ziv compression

26 K. TATAR AND P. PASQUIER

algorithm. Later, their work evolved into two interactive
musical agents, the Continuator and OMax. The Contin-
uator (50) is a well-known musical agent on the problem of
musical style imitation (Pachet, 2003, 2004). The Contin-
uator study proposes the MuMe problem of continuation,
that is, continuing a performance in the style of the per-
former when the performer stops. Using symbolic rep-
resentation of music (MIDI), Pachet (2004) introduces
hierarchy and bias to Variable-Order Markov Models
to handle the polyphony, noise and arbitrary rhythmic
structures in the input. The agent architecture consists
of two parts: analysis and generator. The analysis mod-
ule has three submodules: phrase end detector (adaptive
temporal threshold mechanism), pattern analyser (the
generation of Variable-Order Markov Model) and global
property analyser (number of notes per second, tempo,
meter and overall dynamics). The Continuator has two
modes of interaction: question and answer and collabora-
tion. What Pachet (2004) refers as question and answer
are call and response, a well-known improvisation set-
ting in the context of jazz. In the collaboration mode,
the Continuator implements accompaniment by listen-
ing to a human performer in real-time and adapting the
generated output in parallel with the human performer’s
style. Moreover, Pachet (2003) proposes three implemen-
tations of Continuator. First, a musician can play with
a Continuator trained on a famous musician’s perfor-
mance. Second, multiple musicians can have multiple
Continuators trained on different musical performances.
Musicians can also have Continuators trained on the
same corpus. Third, the Continuator can extend a soloist’s
capability or accompany a soloist by training on a corpus
of chord sequences.

Beatback @ (Hawryshkewich, Pasquier, & Eigenfeldt,
2010) also focuses on the tasks of accompaniment,
and call and response by implementing Variable Order
Markov Models to generate musical rhythms. The sys-
tem represents rhythm sequences in three dimensions:
inter-onset time difference, velocity (MIDI) and drum
type (instrument). BeatBack focuses on two musical
applications: accompaniment, and call and response.
Hawryshkewich et al. (2010) present a technique called
Drum-kit Zoning to use BeatBack as an Expanded Instru-
ment System that expands the performance of a drummer.
The pattern generation in BeatBack has two modes: query
and build. In the Query mode, Beatback uses the last
rhythmic pattern of its input to search for and assign
probabilities to possible next patterns. In the Build mode,
Beatback generates a rhythmic pattern using the proba-
bilities generated by the Query mode.

Ringomatic is another musical agent that gener-
ates thythm accompaniment (Aucouturier Pachet, 2005).
The authors implement two classification tasks to

high energy
tom-toms
and cymbals

high energy
tom-toms 1

low energy
no tom-toms 1

low energy
some cymbals 1

=

Figure 14. Energy-based generation in Ringomatic (Aucouturier
& Pachet, 2005).

automatically generate a hybrid corpus. The first task is
to find solo drum sections in recordings and the sec-
ond task is to label them with three energy levels of
low, medium and high (Figure 14). Ringomatic’s archi-
tecture includes constraint-based concatenative synthe-
sis to generate audio. Ringomatic sets the constraints of
energy, onset density and pitch. The authors propose a
new technique called incremental adaptive search that
is an implementation of local search techniques in con-
straint satisfaction problem. The constraints are intro-
duced to the system as cost functions. There are two types
of constraints: local and global. Local constraints look
only at the current state to predict a next state whereas
global constraints include past states in the cost function.
Aucouturier and Pachet (2005) also present an analysis
of the system in a duo with a human performer playing
MIDI keyboard.

Factor Oracle (FO) is a finite state automata that is
a variation the suffix tree. FO represents substrings and
patterns in a sequence, that is, at least all factors of a
sequence. FO has three types of links: internal links,
external links and suffix links. Internal links are for-
ward links between successive states. External links are
forward links that jump longer than successive states.
Suffix links are backward links that point the longest
repeating factor in the previous states. FO allows incre-
mental learning, and learning is linear in time and
space (Lefebvre & Lecroq, 2002). Assayag and Dub-
nov (2004) compare IP, PSTs and FOs for the sym-
bolic sequences of music. Assayag and Dubnov (2004)
conclude that FOs suit the best to satisfy incremental
and fast online learning, time-bounded generation of
musical sequences and implementation of multi-attribute
models to deal with the multi-dimensionality of music.
Within the last two decades, many studies implemented

FOs in musical agents (Assayag, Bloch, Chemillier,
Cont, & Dubnov, 2006; Assayag & Dubnov, 2004;
Donze et al., 2014; Dubnov, Assayag, & Cont, 2007;
Einbond, Borghesi, Schwarz, & Schnell, 2016; Fra-
nois, Chew, & Thurmond, 2011; Franois, Schankler,
& Chew, 2013; Lévy et al,, 2012; Lynch, 2014; Nika
& Chemillier, 2012; Nika, Chemillier, & Assayag, 2017;
Nort, Oliveros, & Braasch, 2013; Surges & Dubnov, 2013;
Valle et al., 2017; Wang & Dubnov, 2014).

Assayag et al. (2006) present a framework to imple-
ment musical agents with FOs, called OMAX . OMAX
uses a FO based real-time machine improviser scheme
(Assayag & Dubnov, 2004). Assayag et al. (2006) also pro-
pose two unique implementations of FOs: one with rein-
forcement learning, and the other with meta-level learn-
ing. First mentioned by Dubnov and Assayag (2005),
OMAX listens to a performer, and learns the style of the
performer using FO (Figure 15). The problem of style imi-
tation is well-known in MuMe field (Pasquier etal., 2017).
The agent generates by using navigation strategies com-
bined with the links and factors within the FO model,
browsing the model using diverse navigation stratgies,
and renders these sequences sonically. Thus, the gen-
erated material is recombination of musical material in
the agent’s memory. The agent utilises polyphonic pitch
duration slices with MIDI for the musical applications
with symbolic representations, and real-time recorded
audio segments in the case of audio (Lévy et al., 2012).
Lévyetal. (2012) implement OMAX in MAX 5, including
pitch estimation, and spectral clustering with Mel Fre-
quency Cepstral Coefficients (MFCCs) and Fast Fourier
Transform (FFT) in the analysis module. Ongoing artistic
use of OMAX appears in two context, duo with a human
performer playing an acoustic instrument, and control of
an OMAX musical agent by an electronic musician (Lévy
etal,, 2012). The I/O of OMAX can be symbolic represen-
tation of music, or audio signals, or video signals (Bloch,
Dubnov, & Assayag, 2008; Lévy et al., 2012).

The hybrid musical agent architecture @ of Cont,
Dubnov, and Assayag (2007) also implement FOs with an
anticipatory model of musical style imitation with col-
laborative and competitive reinforcement learning. The
authors use multiple viewpoints (Conklin, 2013), and
there are four factor oracles trained for musical dimen-
sions of pitch, pitch contour, duration, and duration ratio.
The system can be used in two modes: interaction and
self-listening. In the interaction mode, the agent listens to
another agent (or human performer) whereas the agent
listens to its own audio output in the self-listening mode.

Collins (2008) also presents a musical agent, called
Improvagent that uses reinforcement learning with
symbolic representations of music. Using the MIDI input,
the agent computes a set of onset, pitch, and rhythm

JOURNAL OF NEW MUSIC RESEARCH 27

——«[Detection)—»[Segmentation)—>
~n

(Delay) (Butler)

—

e |
Scheduler}{Renderer}w

Bloch,

Improviser

Figure 15. The block diagram of OMAX
& Assayag, 2012).

(Lévy,

Current position Reaction
"Tolalelv]ale]a]
----- o Content
Memory
[T |-QOOOOS®
%Generation
"""" I
Update I

Rewriting anticipations

Figure 16. The improvisation renderer in Improtek (Nika,
Bouche, Bresson, Chemillier, & Assayag, 2015).

features as well as higher level features such as key,
pitch class, expressiveness and density. Improvagent treats
input frames as the states of the environment. The sys-
tem clusters environment states using k-nearest neigh-
bours with Euclidian distance. The agent also updates
its database in real-time. The included reinforcement
algorithm is Sarva!! Improvagent generates the audio
using the concatenative synthesis.

Improtek (Nika et al., 2015; Nika & Chemillier, 2012;
Nika et al, 2017; Nika, Echeveste, Chemillier, &
Giavitto, 2014) builds upon OMAX, and implements
OMAX with an introduction of tempo, beats,
harmonisation, and arrangement. Improtek system uses
three Factor Oracles for improvisation, harmonisation
and arrangement, using the symbolic representation
of music (MIDI) for the applications of improvisation
and accompaniment. Nika et al. (2017) further develop
Improtek by introducing a scenario/memory generation
model. Figure 16 shows the guided improvisation in
Improtek with a scenario and memory. The authors use
any alphabet in the musical context, such as audio, MIDI,
or sound synthesis parameters. A symbolic sequence of
labels defined with the alphabet is the scenario whereas
a sequence of musical contents labelled using the alpha-
bet is the memory. The improvisation is guided by the

" The details of Sarva is available in the book on reinforcement learning by
Sutton and Barto (1998).

28 K. TATAR AND P. PASQUIER

scenario using two strategies: anticipation and digression.
Using anticipation, Improtek searches the memory for
a starting sequence. The constraint is that the starting
sequence matches the future labels that follow the cur-
rent state of the scenario. Digression strategy ensures that
Improtek finds a continuation sequence in the memory.
This continuation sequence matches both past and future
states of the current state of the scenario. The imple-
mentation consists of three agents: improvisation handler,
dynamic score, and improvisation renderer. The impro-
visation handler is a reactive agent that implements the
guided music generation using a scenario and a memory.
The dynamic score handles perception of Improtek’s envi-
ronment. The improvisation renderer conducts the out-
put generation using the content generated by the impro-
visation handler. Nika et al. (2017) points out two cases
of performance with Improtek: human and machine, and
machine only. When Improtek is trained on audio, the
agent conducts online audio generation using a phase-
vocoder. Hence, Improtek can sample live audio and
apply time stretching, pitch-shifting and crossfade trans-
formations in real-time to temporally and harmonically
align the generated improvisation with a pre-defined sce-
nario.

In parallel with the studies on OMAX framework,
Dubnov et al. (2007); Dubnov, Assayag, and Cont (2011)
present Audio Oracle . Inspired by FOs, Audio Oracle
is an algorithm that detects repeating sub-clips of variable
length in audio data. Dubnov et al. (2011) define these
sub-clips as audio factors. Similar to FO, Audio Oracle
analyses an audio file as a string of audio feature vectors.
The user can choose different audio features (or combina-
tions of audio features) to train an Audio Oracle. Forward
links in Audio Oracle refers to the states that generate sim-
ilar patterns by continuing forward whereas backward
links correspond to the states sharing the largest simi-
lar sub-clip in an audio file. Audio Oracle uses Euclidian
distance between audio features to decide if two states
belong to the same class. The user sets a similarity thresh-
old, and if the Euclidian distance between two states is
below the threshold, those states are accepted as equiva-
lent. High similarity threshold means that distant states
are more likely to be labelled with the same class, thus
decreasing the size of the alphabet. Furthermore, Dub-
nov et al. (2011) introduce automatic threshold selec-
tion for the Audio Oracle using the notion of Informa-
tion Rate (IR) in Signal Processing (Dubnov, McAdams,
& Reynolds, 2006). AO uses the threshold that gives the
highest information rate.

Surges and Dubnov (2013) further developed Audio
Oracle studies by introducing a system for music anal-
ysis and machine improvisation, called PyOracle
(Figure 17). Similar to Audio Oracle, PyOracle includes

an off-line learning that inherits signal complexity and
familiarity analysis. Surges and Dubnov (2013) relate
complexity and familiarity to aesthetic appreciation
with Birkhoffs idea of aesthetic measure (Rigau, Feixas,
& Sbert, 2008). Birkhoff defines aesthetic measure as the
ratio between the order and the complexity. Audio Oracle
uses IR to balance between the order and the complexity.
IR measures the reduction of a signal’s uncertainty using
signal’s past values. Surges and Dubnov (2013) stated
that low IR refers to higher complexity and lower order
whereas high IR corresponds to lower complexity and
higher order. Audio Oracle uses IR measure to set the
uniqueness distance threshold between the states. Surges
and Dubnov (2013) aim for the highest IR in the imple-
mentations to extract the musical form information of a
signal during the PO’s learning process.

Building on the previous studies of FOs, Audio Oracle,
and PO; Wang and Dubnov (2014); and Arias, Desainte-
Catherine, and Dubnov (2016) introduce another musi-
cal agent system wusing Variable Markov Oracles
(VMO). VMO allows adaptive symbolisation of audio
features to provide representation of higher musical
structures. The system implements Petri Net graphical
language for concurrent and distributed system design,
PyOracle to create Audio Oracles, and I-score (Baltazar,
dela Hogue, & Desainte-Catherine, 2014) to control gen-
erated models with graphic scores. The authors mention
that the previous studies on musical implementation of
Factor Oracles have been criticised by not representing
higher musical structures, and this study addresses the
representation of higher musical structures using Petri
Net. Arias et al. (2016) propose that a possible next step
for the development of this system is the introduction
of scenario/memory generation model, presented by Nika
et al. (2015).

Freely Improvising, Learning and Transforming Evolu-
tionary Recombination (FILTER) (Nort et al., 2013) is a
musical agent that combines FO and a type of Markov
Models, called Hidden Markov Models (HMMs). HMMs
are widely used to model temporal discrete sequences.
HMMs consist of hidden states and observed states. The
number of hidden states can be different than the number
of observed states. The transition matrix is the likeli-
hood of transitions between hidden states. The obser-
vation (or emission, or confusion) matrix is the likeli-
hood of observations given a hidden state. HMMs have
three applications: evaluation (likelihood of an observed
sequence given an HMM), decoding (the sequence of
hidden states that most likely to generate the observed
sequence) and learning (generating an HMM given a
sequence of observed states).

The musical application of FILTER is free impro-
visation. FILTER implements style imitation based on

unsupervised learning. The learning applies Smalley’s
approach on textures and gestures in Electro-acoustic
Music (Smalley, 1997). Using an inter-onset threshold,
FILTER samples the audio input of the last N seconds and
the memory encodes the temporal changes of audio fea-
tures. If the recorded sample is dissimilar to the anything
in the current memory, it is added to system’s memory.
FILTER includes sonic gesture and texture analysis. FIL-
TER applies continuous gesture recognition method pro-
posed by Bevilacqua et al. (2009) to learn sonic ges-
tures of the input using Linear Predictive Coding (LPC),
Mel-Frequency Cepstral Coeflicients (MFCCs), autocor-
relation coefficients and YIN algorithm features (fre-
quency, energy and periodicity). The gesture recognition
algorithm combines HMM with dynamic time warp-
ing. The system can learn a dictionary of gestures either
offline using a corpus or online by listening to the
input. The gesture recognition algorithm outputs the
likelihood of gestures. Using the likelihood, FILTER can
perceives the level of deviation from the current ges-
ture of the input. The system also inherits a non-linear
time-frequency analysis called intrinsic mode function
to comprehend the sonic texture of the input. FILTER
includes two types of memory: semantic and episodic.
The semantic memory is the dictionary of distinct ges-
tures whereas the episodic memory applies FO to learn
temporal structures of the input. FILTER also applies a
mutation only Genetic Algorithm (GA) for the adaptive
goal decision process. The system introduces adaptivity
by mapping the gesture/texture likelihood values to the
fitness of GA.

Lastly, SpeakeSystem (62) is a musical agent with Vari-
able Markov models (VMMs) (Yee-King d’Inverno,
2016). The agent uses FM synthesiser to generate audio.
The modulation index of the synthesiser changes as the
length of sequences generated by VMMs varies. The
authors stated that using two VMMs, where one VMM
handles the rhythm and the other focuses on the pitch,
generates more varied output, comparing to the case with
one VMM.

6.2. Hybrid musical agents combining statistical
sequence modelling with rule-based models

Martin, Jin, and Bown (2011) present a framework
for non-technical users to design musical agents. This
framework, called The Agent Design Toolkit (ADTK .)
implements the ideas of interactive machine learning
in musical agents. ADTK consists of three elements: a
set of recorded performance variables, a set of prob-
abilistic temporal models and a set of rules defining
the relation between performance variables. The frame-
work uses VMM for probabilistic temporal models and

JOURNAL OF NEW MUSIC RESEARCH 29

association rule learning (ARL) algorithms for automatic
rule generation using the recorded performances. Fol-
lowing this study, Martin, Jin, Carey, and Bown (2012)
introduce ADTK to Ableton Live, a well known Digi-
tal Audio Workstation (DAW). Martin, Jin, Carey, et al.
(2012) conducted two case studies on ADTK, designing a
musical agent that improvises electro-acoustic music, and
amusical agent generating Drum and Bass music. Martin,
Jin, and Bown (2012) mention a possible computational
complexity problem with the initial versions of ADTK.
The automatic rule generation solves the constrained sat-
isfaction problem using ARL algorithms. However, it is
not possible to know how long ARL algorithms take, and
how many solutions the algorithm produces. This makes
the systems designed with ADTK framework suscepti-
ble to bugs in real-time performances. To address this
computational complexity problem, Martin, et al. (2012)
propose binary decision diagrams (BDDs). Although
the introduction of BDDs does not completely solve
the computational complexity problem, the designer can
examine if an agent is capable of real-time performance
before the performance. Thereby, the system is no longer
susceptible to bugs in real-time performances. Martin,
Jin and Bown (2012) also compare BDDs-based ADTK
to the initial version of ADTK with ARL, conclud-
ing that the parameter update duration was more pre-
dictable in BDDs-based implementation than the ARL-
based implementation. Martin and Bown (2013) also
demonstrate ADTK on style imitation. Bown and Mar-
tin (2013) mentioned that the musicians could control
the agents designed using ADTK. Hence, these agents
stand somewhere between an extended instrument and
an autonomous performer.

CinBalada is another multi-agent system that
combines statistical sequence modelling with rule-based
models (Sampaio, Ramalho, & Tedesco, 2008). The sys-
tem generates polyphonic rhythmic sequences as the
symbolic representation of music. Sampaio et al. (2008)
are inspired by the music styles with an emphasis on the
rhythm such as taiko, pungmul, samba batucadas and
maracatu. CinBalada includes three rhythm representa-
tions of Time Unit Box System, Polygonal Representa-
tion, Time Elements Displayed as Squares to calculate
rhythmic measures of offbeat-ness, evenness and rhyth-
mic similarity as chrotonic distance. CinBalada includes
these rhythmic measures in the evaluation functions.
Cinbalada is a homogeneous MAS with multiple roles.
There are multiple rhythmic roles that each agent can
choose. The number and the type of rhythmic roles
depend on the implemented musical style. For example,
a Batacuda implementation has three roles of base, com-
plementary base and solo. The evaluation functions also
change depending on the implemented style. Within a

30 K. TATAR AND P. PASQUIER

bar, agents in CinBalada negotiate what to play in the
following bar. The agents share their rhythmic patterns
with the other agents. CinBalada outputs only the pat-
terns that score the highest on the evaluation functions.

6.3. Hybrid musical agents with artificial neural
networks

Artificial Neural Networks (ANN) is a set of Machine
Learning algorithms. ANN algorithms are inspired by the
theories of neuron activation and sensory data processing
of neural systems in nature. ANN has been applied to the
Machine Learning problems of classification and linear
regression (Mitchell, 1997).

The Reactive Accompanist (65) is the first musical
agent system that implements Subsumption architecture,
including three ANNs in different layers (Bryson, 1995).
Subsumption architecture (mentioned in Section 5)
implements a hierarchical set of rules in which lower
layers have higher priority, or vice versa. Reactive Accom-
panist is a mono-agent system with audio input and
symbolic output (MIDI). There are three layers in the
architecture: pitch, chord and time; ordered from the low-
est to the highest layer respectively (Figure 18). The pitch
layer has two modules. The first one implements Fourier
transform and outputs frequency-gain pairs. The sec-
ond module is an ANN with supervised learning. The
input is frequency-gain pairs whereas the output is pitch
classes. The chord layer is also an ANN. The input is pitch
classes and the output is predefined chords. The highest
layer in the hierarchy, time has four modules of thresh,
beat, timed, and change. The first three modules handle
rhythm. Beat module implements tempo estimation with
ANN and change module handles chord changes. The
application of this system is accompaniment of live input.
Bryson implemented the system in the first half of the 90s
when Fourier transform calculation was still too compu-
tationally complex for online applications. Because of the
Fourier transform calculation in the pitch estimation, this
system works offline.

Another musical agent with ANNs is NN music
(Young, 2007). The architecture is an implementation of
the musical agent framework, PQf proposed by Blackwell
et al. (2012), where P implements listening and analysis,
Q handles performing/synthesis and f conducts pat-
terning, reasoning, or generative functions. NN music
includes two analysis functions in P module: parameteri-
sation of pitch characteristics and statistical representation
of musical behaviour. These two analysis output two inde-
pendent state representations: a set of recently identified
pitches and a set of statistical representation of audio fea-
tures computed over 50 ms audio frames. The statistics
are calculated with a varying window of 5-30 s. NN music

begin #1
get_next_state #1 20
dump_oracle load save

0.

concat Vi oracle ¥

coll #1 1

learn_threshold #1

100

p draw-oracle p license py queryae-gl

record region
. select region m . select region -

record region record region

. select region . select region -

record region

Figure 17. The interface of PyOracle.

@ Line affected

O Line read

Thresh) @ R

.

Figure 18. The Subsumption architecture of the Reactive Accom-
panist (Bryson, 1995).

includes two Multi-layer Perceptron (MLP) neural net-
works that are connected in series. Both networks are
trained with the back propagation algorithm and have
three hidden layers. The statistics of audio features is
the input of the first ANN. The second MLP maps the
classification output of the first MLP to synthesis param-
eters. The second MLP outputs a set of synthesis param-
eters with a probability distribution. Hence, the synthesis
module inherits stochastic behaviours. The training of
the first MLP is ongoing during the performance. There
is a similarity algorithm in the system that checks if the

current state is similar to the states that are used in the
training. If the current state is not similar, ANNs are
trained with the current state. The second MLP is trained
before the performance.

Bown (2011) presents a musical agent with
continuous-time recurrent neural networks (CTRNNS).
Each node is connected to each other with a direc-
tional weighted connection (synapses) in CTRNNs. In
this implementation, the nodes have sigmoid activation
function to process the directional weighted outputs of
previous neurons. CTRNN is a blackbox type module
with N (and M) floating point input (and output) val-
ues. In addition to the learning in CTRNN, Bown (2011)
implements a mutation-only Genetic Algorithm (GA)
that evolves multiple CTRNNSs in parallel. Bown (2011)
mentions that the GA includes a multi-objective fitness
function that evaluates CTRNNS’ ‘success at acting with
the responsive properties of dynamic reservoirs’ and suc-
cess at showing repetitive behaviours when the input is
repetitive. This musical agent maps the CTRNN output
to continuous synthesis parameters as well as the decision
of triggering sound events. This agent has been presented
in many concerts, performing with human-performers
playing trombone, clarinet and shakuhachi. Building
on this agent, Bown (2011) presents another musical
agent that includes Decision Trees (DTs). Bown (2011)
states five advantages of DTs over CTRNN:S: discrete out-
put on each time step, the ease in the analysis of the
agent’s behaviour, efficiency and adaptive self-calibration
of decision boundaries. This implementation with DTs
also includes a mutation-only GA evolving multiple DTs
in parallel. The fitness function is single-objective, and
it is for maximising the number of DT leaf nodes vis-
ited. This agent has also been presented in many venues,
with human-performers playing trumpet, bass clarinet
and electronics.

Kohonen Network is an application of ANN (Koho-
nen, 1998). Although Kohonen networks, including Self-
Organising Maps (SOMs), are proposed in the early
1980s (Kohonen, 1982), it is recently discovered by stud-
ies related to the MuMe field. Smith Garnett (2012)
present a musical agent with adaptive resonance
theory (ART) and reinforcement learning (the system
number 69 in Table 1). This implementation focuses on
monophonic melody generation. The ART network is a
self-organising neural network for classification and cat-
egorisation of data vectors. ART network differs from
SOM in training. Each input vector updates only one
node in the ART network whereas in SOM, a set of nodes
are updated. The agent converts the MIDI input to a
combined feature vector of pitch class, interval, interval
and direction window, direction sign, octave and inter-
val octaves. The reinforcement learning implements two

JOURNAL OF NEW MUSIC RESEARCH 31

functions. First, when the agent updates an existing node
in ART network, the agent calculates the reward using
the previous and the updated state of the node. Second,
when the agent creates a new node in ART network, the
agent calculates the reward using a user set parameter
called vigilance. The authors also present two examples
of the agent on free improvisation. Another example
presents the output of an agent trained using J. S. Bach’s
six unaccompanied cello suites.

Smith and Deal (2014) present a musical agent appli-
cation of SOMs. This agent architecture utilises
chroma audio feature extraction in the perception stage
to extract the pitch and rhythm information from the
agent’s audio input. Then, the agent’s memory organises
extracted chroma vectors in two levels, long-term and
short-term. The authors introduce adaptive behaviour to
the agent’s short-term memory by using a SOM. In this
system, training of the SOM is continuous. The decision
module of this agent calculates a measure of learning in
the SOM using the difference between the previous state
and the trained state. Smith and Deal (2014) state that this
learning measure is analogous to the Kolmogorov com-
plexity. The decision module targets a learning rate. This
agent follows its input if it is complex enough to satisfy
the target learning rate. If not, the agent diverges from
the input to increase the overall complexity. Hence, the
decision module provides SOM a distance to the audio
input vector. Then, the agent decides on a corresponding
SOM node. This node is the input vector of the long-term
memory. The long-term memory uses a k—d tree to search
in a multi-dimensional space. Each vector provided from
SOM is a search query to locate the closest vector in the
long-term memory. The long-term memory consists of
pre-defined audio files, and the agent does not update the
long-term memory.

Martins and Miranda (2006) present a musical
agent with SARDNET generating rhythms. SARD-
NET is a variation of SOMs with an addition of tempo-
rality. SARDNET deals with event sequences using node
activation values and differs from SOMs in two ways.
First, the winning neurons are not included in the subse-
quent training. Second, the activation values of each node
are decreased in each step. SARDNET represents the
input sequence as all active nodes ordered by their acti-
vation values. Martins and Miranda (2006) approach the
rhythmic events as three-dimensional events. These three
dimensions are timbre, velocity and inter-onset inter-
val. The musical agent includes two ANN cascaded in
series. Symbolic representation rhythmic phrases (MIDI
sequences) are the temporal input of the SARDNET. The
output of SARDNET is connected to a one-layer Per-
ceptron with three outputs. The training of this musi-
cal agent is through pre-recorded rhythms. The authors

32 K. TATAR AND P. PASQUIER

mention that after fifty iterations, the agent starts to
self-organise. Notice that we also encountered the idea
of evolving rhythms in Eigenfeldt’s (Eigenfeldt, 2011)
Kinectic Engine (see Section 5.1.2).

6.4. Hybrid musical agents with cognitive models

Camurri et al. (1995) present a musical MAS frame-
work called Hybrid Action Representation and Planning
(HARP) @ Using the idea of graphical visual program-
ming, HARP provides flexible programming environ-
ment to the user. The system is capable to create a hybrid
agent system. The framework is inspired by MAS imple-
mentations in Robotics. The application of this frame-
work is assisted composition, performance and analysis.
The authors define two main components of HARP: sym-
bolic and sub-symbolic. Symbolic components implement
compositional syntax and semantics, including domain
specific knowledge representations. Sub-symbolic com-
ponents are the reactive modules of the system with
a network of cooperative agents. Sub-symbolic compo-
nents process the signals of MIDI, audio, or visuals. The
authors also give an example of a theatre performance in
which HARP framework is used to programme a software
controlling sound, music and three-dimensional com-
puter animation of humanoid figures interacting with
real actors on stage.

The hybrid musical agent architecture @ of Cont
et al. (2007), mentioned in Section 6.1, explores musi-
cal agent applications using the mental representations
of expectation in the problem of style imitation. There
are four types of mental representations of expecta-
tion, proposed in the literature of psychology of musical
expectation: verdical expectation (expectation of familiar
works, related to episodic memory), schematic expecta-
tion (related to the semantic memory), dynamic adaptive
expectation (related to the short-term memory), con-
scious expectation (related to the conscious reflection
and prediction) (Huron, 2014). Cont et al. (2007) apply
these ideas to MuMe by using an anticipatory model of
musical style imitation with collaborative and competi-
tive reinforcement learning. Within four types of antic-
ipation (Implicit, Payoff, Sensory and State), the authors
implement payoff and state anticipation models.

Similarly, Gifford Brown (2010) focus on the idea
of using anticipatory timing to plan future actions of
a musical agent. The system, called Jambot @ is a
hybrid musical agent that generates percussive musical
rhythms. Jambot can generate rhythms by listening to
other performers, or alone. The authors define antici-
patory timing as a search for the best next note and
when to play this note. The study stated that anticipatory
timing enhanced greedy search while slightly increasing

the computational complexity. Jambot includes a fitness
function that evaluates possible actions and possible act-
ing times for the next action. Jambot repeats the fitness
evaluation on each time frame (audio frame). Gifford and
Brown (2010) also present examples of system’s output
with and without anticipatory timing.

In the later versions of Jambot, Gifford (2013) intro-
duces musical expectation in their hybrid musical agent.
Jambot’s application is percussive accompaniment to a
live audio input. The authors are inspired by the previ-
ous works on musical expectation and propose metre as
a framework for musical expectation. The system design
involves metrical ambiguity to balance novelty and
coherence. Jambot’s architecture has three modes that
controls level of metric ambiguity: disambiguation (use
only the most plausible meter), ambiguation (use all plau-
sible meters with equal weights) and following (use all
plausible meters with the weights adjusted by plausibil-
ity). The reactive behaviours in this system include three
approaches to fluctuate between imitative and intelligent
actions: ‘(i) mode switching based on the confidence of
understanding, (ii) filtering and elaborations of imitative
actions, (iii) measured deviation from imitative action
according to a salient parametrisation of the action space’

Another recurrent theme in cognitive musical agents
is motivation-driven, goal-oriented musical agent archi-
tectures (Beyls, 2008, 2009; Lynch, 2014). Beyls (2008,
2009) focuses on the motivation-driven musical agents
@. The architecture includes two-dimensional space
(stability versus introverted-extroverted) to model beha-
vioural changes. The system abstracts motivations as
two types of drives: integration and expression. Integra-
tion drives aim to follow the input data whereas expres-
sion drives seek to move away from the input data. The
compound function sets the drive of the agent depend-
ing on the levels of integration and expression. This
hybrid musical agent implementation also includes reac-
tive modules with an implementation of reinforcement
learning and a Genetic Algorithm module (see 5.1.2) that
evolves drives. Beyls (2009) also analysed the agent and
shows that the fitness function of GA successfully follows
the drives set by the compound function.

Lynch (2014) work is the only study that uses a cogni-
tive architecture (CLARION) presented in the Cognitive
Science. The system, called Mocking-bird combines
Van Norts FILTER system with the Clarion cognitive
architecture (Figure 19). The Clarion cognitive architec-
ture consists of four sub-systems, that are the Action Con-
trol System (ACS), Non-Action Control System (NACS),
Meta-cognition System (MCS) and Motivation System
(MS). Users can implement either the complete Clar-
ion architecture or any number of its sub-systems. The
Clarion architecture decides the actions of Mocking-bird.

These actions indicate a pre-recorded sample to be played
starting from a point with a duration, and post processing
effects such as pitch shift and time stretch.

The last four systems that we survey includes Affec-
tive Computing. First, MAgentA @ is a cognitive musi-
cal agent that focuses on generating ‘film like music’
for games using an algorithm database with affective
labels (Casella & Paiva, 2001). MAgentA is a part of the
game framework FantasyA in which the user can influ-
ence the affective state of the characters they play (Paiva
et al., 2002). MAgentA’s architecture has three mod-
ules: perception, reasoning, and action. This architecture
resembles (Blackwell et al., 2012) PQf musical agent
framework. Perception module checks the affective state
of the environment and generates outputs when the affec-
tive state changes. Reasoning module checks if the new
affective state can be generated with one of the algo-
rithms in the database. If not, the exception handling
module uses the history database to decide the most
appropriate algorithm to use. Once the agent decides
which algorithm to use, it sends the algorithm to the
composition engine. The action module generates the
audio output using data coming from the composition
engine.

Second, Dubnov and Assayag (2005) combine the flow
model with Factor Oracle and create a musical agent
within the OMAX framework. The agent listens to other
performers online to train the FO. The flow model
defines the notion of Experience Flow that explores the
relationship of mental states with the activity where a sub-
ject is fully engaged and immersed with the tasks (Csik-
szentmihalyi, 2008). Dubnov and Assayag (2005) change
the original flow model dimensions, challenge and skill,

JOURNAL OF NEW MUSIC RESEARCH 33

with two dimensions of emotional and familiar, and eight
categories of arousal, flow, control, boredom, relax, apa-
thy, worry and anxiety. The authors mapped these two
dimensions of flow model variation to the replication,
innovation and recombination parameters of their musi-
cal agents. These parameters controls the probabilities of
links within the FO.

Third, Kirke and Miranda (2015) implemented Affec-
tive Computing with a virtual ecosystem. We men-
tion other ecosystemic approaches in musical agents in
Section 5.2.2. The application of the system is melody
generation for assisted composition. The system is
called Multi-agent Affective Social Composition System
(MASC @) and combines Affective Computing with
a MAS. The application in focus is assisted composi-
tion. MASC generates melodies through communica-
tion and artificial emotional influence between agents.
This system implements affect estimation of musi-
cal melodies with continuous two-dimensional affective
space. The dimensions are valence and arousal. This 2D
model is common in Affective Computing in sound and
music (Eerola & Vuoskoski, 2013). The agents situated in
a virtual environment. The number of agents is in the
range of 2-16. Each agent has a monophonic melody.
The agents share their melodies with each other. Agents
learn other agents melodies if the emotional state of the
melody is close to the agent’s emotional state. Moreover,
the emotional states of agents are also affected by emo-
tional states of other agents during communication. The
authors present examples of melodies generated by this
system. Also, the first author shared his compositions
in which the first author used this system to generate
melodies to assist the composition process.

Audi /. ““““ g 1 } """""" |\ / ; \
lIJNIO | N Auditory I l\‘ Clarion
: Analysis l : I
| s ! ACs | NACs |
I Factor Other | ¥ ity Dot oSl
| oracle | “** | Analyzers I 1 'I chunks MS ||| MCS
: v v v o
| | Data Bus l [.= E 3
' —| : : : Action chunk
1 Audio Recordin Action |e.l....{.... T H— cuonehunks
1 g Parser : |l I K to OSC /
: ; 3 ; ;I; | \ I'
: EILTER e R : \ Clarion Environment
| - ations I OSC over isgeni
I
\I _____________ Se-F---- / fast UDP Audio flows ===
Max/FILTER Environment S A(;JS'II’O Max data flows ——>

Figure 19. The architecture of Mocking-bird (Lynch, 2014).

Clarion data flows

34 K. TATAR AND P. PASQUIER

Corpus of Recordings

Automatic Corpus Generation Learning

—_—

Multi-granular Audio Feature Extraction C .

S megntalion !] MFCCs, loudness, Statistics 1) orp ust‘s
8 eventfulness, and of features ety
by novelty and labels

pleasantness labels

Self-Organized Cluster Generation ,/—"//
Map Training Clustering by

SOM Training The list of labelling each element Zt;llfﬁéf

Environment
Audio output of all agents

\ Audio Output <— Segment playback

Statistics of feature
vectors calculated
during the last audio
segment playback

Generation

Machine Listening
Audio Feature Extraction
Audio | MEFCCs, loudness,
input eventfulness, and
pleasantness labels

<= Duration

/

using the label vectors of ~> SOMnode — inthe corpus with the — per SOM Action
segments in the corpus vectors closest SOM node Random selection of
) Se———— __ vector _ no\de BMU VMM SOM an audio segment
Variable-Order Markov Model The closest ~ — generation > node to be ™ using the cluster of
varsov Mode:
Generating the sequence VOMM VOMM SOMinods Jde Rlayedin e '.hg SOM node
—_—
of SOM node numbers —_—

Training model

Figure 20. The system architecture of MASOM (Tatar & Pasquier, 2017).

The last system that applies Affective Comput-
ing is Musical Agent based on Self-Organising Maps
(MASOM) (Tatar & Pasquier, 2017; Tatar, Pasquier,
& Siu, 2018). MASOM is a machine improvisation archi-
tecture for live performance (Figure 20). The musi-
cal context of MASOM is experimental music and free
improvisation. MASOM is a flexible agent that can be
trained on any audio file such as a recording of a per-
formance or composition. MASOM extracts the musi-
cal form of an audio file using unsupersived learning.
The learning stage has four steps. First, MASOM seg-
ments the audio file using the multi-granular segmen-
tation (Lartillot, Cereghetti, Eliard, & Grandjean, 2013).
Multi-granular segmentation uses novelty curve to seg-
ment an audio file. Second, each audio segment is labelled
with duration, eventfulness, pleasantness and timbre fea-
tures. Third, MASOM uses SOM to cluster these audio
segments. The last step of the learning stage is the
VMM training. Each segment of the original audio file is
labelled with the closest SOM vector in the feature space.
Using the order of segments in the original audio file,
MASOM generates a string of SOM nodes. This string
represents the musical form of the original audio. VMM
is trained using this string of SOM nodes. The genera-
tion stage in MASOM includes online machine listening.
The agent can listen to itself and other performers by
extracting eventfulness, pleasantness and timbre features.
MASOM uses machine listening module with the trained
VMM to decide what to play next.

7. Evaluation of musical agents

Frayling (1994) proposes three types of research in Art
and Design. First, the research into art and design is the
historical, aesthetic, and perceptual research such as the
Music History research. Second, the research through
art and design includes the research of materials, cus-
tomisation of technology, or procedures and results of
practical experiments. Third, the research for art and
design communicates the results of research through the

end product, that is the work of art. The ideas and results
are embodied in the artefact; hence, the verbal commu-
nication of the results is not the primary goal of this third
type of research in art and design.

The developers of MuMe systems evaluate their imple-
mentations informally as a part of the software develop-
ment. Hence, there are two classes of evaluation of MuMe
systems: informal evaluations and formal evaluations. We
differentiate the evaluation types of MuMe systems and
musical agents with the following typology:

- Informal Evaluations does not involve formalised
research methodologies.

- The authors are the creators of MuMe systems.

- Users, peers and experts are the close entou-
rage of authors.

- The audience is the recipients of the artworks
generated by the MuMe systems.

- The media covers critical writings of experts in
art and music.

- Formal Evaluations are formalised methodologies
to assess the success of MuMe systems.

— Peer reviewers, curators and jury give direct
and indirect feedback to the authors of MuMe
systems.

- Theoretical and analytic measures are the for-
mal evaluation methodologies that does not
involve human participants. These method-
ologies are synthetic measurements that are
acknowledged in the academia.

- Empirical studies apply quantitative, qualita-
tive and mixed methodologies with human par-
ticipants.

7.1. Informal evaluations

Informal evaluations do not involve any established
research methodology. Informal evaluations of musi-
cal agents start at the beginning of systen’s ideation.
The authors iterate the architecture and the system
parameters as a part of the development process. This

process includes many iterations in which the authors
evaluate the system’s output, change the parameters or the
agent architecture, and evaluate the system’s output again.
For example, most machine learning algorithms require
a set of parameters to be decided by the developer. These
parameters are mostly set by many trials and errors with
the system.

Colleagues and friends of authors are the subjects of
another type of informal evaluations. The authors have a
different perspective on the system with the feedback of
people who are close to the authors. When the system’s
output is publicly shared, the authors receive feedback
from the audience. Although this type of feedback is still
informal, it is beneficial to evaluate the initial results of
the system. When the system outputs reach the media
such as journalists, critics, software testers, bloggers; the
authors receive a feedback about social implications of
systems.

7.2. Formal evaluations

Formal evaluations use established research methodolo-
gies to answer a clearly defined research question to assess
a system (Arges, Forth, & Wiggins, 2016) two types of
formal evaluations: internal and external.

Internal formal evaluations are conducted during the
generation stage of a musical agent. Musical agents assess
their creative output during the generation to improve
the output. In most cases, musical agent developers
implement the internal evaluation as system feedback
loops or using agents with evaluation roles. For exam-
ple, Cypher (10) uses its listener agents to evaluate player
agents. The internal evaluation is a part of system design,
and we already covered the system design of musical
agents in the previous sections.

External formal evaluations are conducted after the
agent finishes its performance or generation. There are
four aspects of external formal evaluations:

- Dimensions of evaluation: Three types of evalua-
tion dimensions are common in the CC literature:
software validation, the quality of a system’s output
and creativity (Ritchie, 2014). In MAS, the authors
can study the creativity of one agent or the creativ-
ity of the system output. Most synthetic evaluations
research the effect of hyper-parameters on the sys-
tem output. A hyper-parameter is a common term in
Machine Learning and it refers to the parameters of
system design, such as number of agents in MAS, or
genetic operator probabilities in EC. In most cases,
hyper-parameters are set before the system run.

- Participants of evaluation: The authors develop
MuMe systems to be used by a user to generate

JOURNAL OF NEW MUSIC RESEARCH 35

music that is presented to an audience. Therefore,
researchers focus on three types of participants in
the evaluation: the authors, the users and the audi-
ence. Researchers can evaluate the research and
development process of authors, the interaction of
users with the finalised system, and the audience
response to the output generated by the system.

- Output selection: Ritchie (2014) proposes five
types of output selection that appears in CC: re-
creating known exemplars of the domain, exploring
the neighbourhood of these exemplars, exploring the
parameter space of a system, random sampling of the
parameter space, structured sampling of the parame-
ter space. These selection options are also applicable
to MuMe systems.

- Methodology: Software validations, synthetic eval-
uations and empirical evaluations are the tools of
formal evaluations.

7.2.1. Software validations

The musical agents that we mention in this survey are
written as software codes. Software evaluations use soft-
ware validation techniques in Computer Science to assess
if the code implementation is sound, complete, or stable.
Briefly, the following three techniques come forward in
Computer Science:

- Formal Validations: Mathematical proofs of the sys-
tem behaviour are examples of this type of valida-
tions.

- Black Box Tests: Given pre-set inputs, black box
tests study the system output to evaluate a system’s
behaviour.

- White Box Tests: Given a set of selected inputs,
white box tests exhaust a system for all possible
conditions to ensure stability and robustness.

7.2.2. Synthetic evaluations

Synthetic methods do not involve human participants.
Theoretical, analytical and computational tools are the
methods of synthetic evaluations. Because of the partic-
ularities of musical agent implementations, the authors
create new synthetic methodologies that are specific
to their implementation. In the following, we survey

synthetic evaluations of Beatbender , system @,

VMMAS @, IMAP (36) and pMIMACS (46).

Levisohn and Pasquier (2008) evaluated Beatben-
der’s system output using two criteria: emer-
gence and complexity. The authors assessed the emer-
gent behaviours of the system by analysing interac-
tion between agents, and the complexity by compar-
ing subsequent patterns generated by the system. The

36 K. TATAR AND P. PASQUIER

authors reported that BeatBender @ successfully gen-
erated emergent rhythms by taking advantage of the
Subsumption architecture.

Aucouturier (2011) also evaluated the emergence and
convergence in the multi-agent society @ that evolves
tuning systems. The author evaluated the system with
different agent interaction types: single note shift inter-
action with harmonic timbre, drone shift interaction
with harmonic timbre, drone shift interaction with com-
pressed timbre, and drone shift interaction with a soci-
ety of agents with harmonic and compressed timbre.
Hence, the author researched the effect of agent interac-
tion types on the system output. Aucouturier (2011) con-
cluded that the system could emerge coherent tuning sys-
tems through local agent interactions in the multi-agent
society.

The following three evaluations studied the effect of
hyper-parameters on systems” output. Vicari et al. (2005)
evaluated VMMAS @ with two evaluations. Both evalu-
ations calculated a variable called synchronism property,
which is calculated using the rhythm generated by the
agents. However, the authors concealed the details of
how to calculate this parameter. The authors claimed that
synchronism property above 60 indicates a ‘good per-
formance’. The first evaluation included only software
agents, and concluded that introducing new agents to
VMMAS () influenced the overall synchronism. Hence,
the authors studied the effect of a hyper-parameter, that is
the number of agents. We mention the second evaluation
of VMMAS in Section 7.2.3.1.

Miranda et al. (2010) conducted three evaluations to
evaluate IMAP’s performance. The first evaluation
studied if agents could perform according to their indi-
vidual preferences. The weights of the rules in an agent’s
fitness function indicate the individual preferences of an
agent. This evaluation concluded that average agent per-
formances were correlated with the preferences of agents.
The second evaluation showed that the user can con-
trol the overall diversity of performances by changing
the spread of the rules weights. The third evaluation
researched if the population was affected when a subset of
agents in the population are biased in their fitness func-
tion. This third evaluation showed that IMAP (36) could
direct the performance diversity to a region in the search
space by introducing a bias to a subset of the population.

Kirke Miranda (2011) analysed pMIMACS out-
put with a synthetic evaluation with three agents. This
evaluation was the detailed analysis of two runs of MAS.
The first run was 8 episode long whereas the second
one was 10. During each episode, agents with performer
roles performed for the agents with listener roles. For
this evaluation, the agents were initiated with a unique
melody including four notes. All notes were sixteenth

notes generated by random walk. The authors claimed
that pMIMACS’s outputs were less mechanical than the
outputs that were ‘usually produced by the algorith-
mic compositions systems. However, the study did not
include any empirical evaluation to support this claim.

None of the synthetic evaluations study the creativ-
ity of musical agents. However, musical agents tackle
musical creative tasks, and the assessment of creativity is
crucial to evaluate the success of a system.

7.2.3. Empirical evaluations

Given that the definition of creativity is still in discussion
(Peter, 2009), empirical evaluation methodologies handle
the complexity of creativity assessment by using human
participants to judge the output of a system. Before going
into the details of these evaluations, let’s cover the back-
ground of creativity.

Boden (2015) defines creativity as ‘the ability to gen-
erate new forms. This definition explains creativity by
focusing on the artefact. Boden (2015) continues by
proposing psychological and biological creativity to cate-
gorise human and non-human creativity. Biological cre-
ativity is ‘the ability to generate new cells, organs, organ-
isms, or species. We explored computational abstractions
of biological creativity in musical agents in Section 5.2. In
comparison, psychological creativity is ‘the ability to gen-
erate ideas and/or artefacts that are new, surprising, and
valuable’

Boden (2015) focuses on two key points to understand
which forms are new. First, Boden (2015) discusses the
notion of novelty in creativity. Second, historical creativ-
ity is a special case of psychological creativity in which
generated form is novel to the community. Furthermore,
Boden (2015) states three types of creativity as a result
of mechanisms generating novelty; exploratory, combina-
tional and transformational. First, exploratory creativity is
making novel forms that satisfy constraints of a particular
style. An example of exploratory creativity is improvis-
ing a Jazz melody in the style of Charlie Parker. Second,
combinational creativity is combining styles in novel ways
such as improvising a Jazz melody in the style of Chet
Baker with the ornamentations of Charlie Parker. Third,
transformational creativity is the expansion of known
conceptual space. An example of transformational cre-
ativity is John Cage’s idea of including random sounds of
audience to a musical performance.

How to assess the creativity of a system has been a
challenge for the CC research. Jordanous (2012) pointed
out the lack of evaluation in the publications of CC sys-
tems. Also, within the publications that evaluated their
systems, the evaluation of creativity was not common.
When the creativity evaluation took place, the partic-
ipants were mostly the people who implemented the

system. Jordanous (2012) emphasised the lack of evalu-
ation criteria in the publications that evaluated creativity.
According to 2012, there was a clear lack of connection
between the evaluation of CC systems and the evalua-
tion methodologies that were presented in CC. Currently,
there is still no evaluation methodology that is accepted
as a standard in CC. Jordanous (2012) also stated that CC
inclined towards the evaluation of the quality in compar-
ison to the evaluation of creativity. We observed similar
tendencies in the evaluation of musical agents.

There has been recent attempts to categorise the
evaluation methodologies for MuMe systems. Arges
etal. (2016) identified six types of external evaluations:

- Behavioural Tests

- Consensual Assessment Technique (CAT)

- Extensions within Computational Creativity

- Questionnaires, Correlational Studies and Rating
Scales

- Physiological measurements and neurophysiologi-
cal measurements

Regarding the evaluation of creativity, we observed
two common cases in the empirical evaluations of musi-
cal agents. In the first case, the authors evaluated the
systems from the user perspective. The participants were
expert users who tried the musical agent. Although these
evaluations did not necessarily follow the typical CAT
methodologies, we grouped them under the CAT cat-
egory since the participants were expert users. In the
second case, the authors evaluated a musical agent from
the perspective of the audience. In these evaluations, the
evaluation tools were questionnaires and rating scales.
Lastly, we observed only one system that incorporated
an evaluation methodology from CC. In the following,
we go into details of musical agent system evaluations on
creativity.

7.2.3.1. Consensual assessment technique. A group of
experts evaluate the creativity of MuMe systems in Con-
sensual Assessment Technique (CAT). In musical agents,
the expert evaluation refers to quantitative and qual-
itative empirical evaluations with expert participants,
and case studies. For example, the second evaluation
of VMMAS (D (Vicari et al., 2005) studied a perfor-
mance session with software and human agents. The
human performer reported that the system was success-
fully accompanied with satisfactory rhythmic and har-
monic behaviour.

Navarro et al. (2016) presented an example of
mixed method empirical evaluation study with MUSIC-
MAS (©) that assists composers by generating harmony
progressions. The participants were novice composers

JOURNAL OF NEW MUSIC RESEARCH 37

who were studying first year music theory at university.
The authors asked the participants to compose their first
piece using a harmony progression generated by MUSIC-
MAS. The participants rated each others’ compositions
as well as MUSIC-MAS’ success on assisted composition.
This evaluation concluded that MUSIC-MAS could help
novice composers by assisting composition tasks.

Murray-Rust and Smaill (2011) carried out several
case studies to evaluate their musical agent based on
MAMA (9). The case studies were a duo of a human
performer and

- another human performer

- arecording of a human performer

- a musical agent without expressivity and
interactivity

- amusical agent mirroring the human input

- amusical agent including Musical Acts

However, this empirical evaluation concluded that the
introduction of Musical Acts did not significantly change
interactivity, competence and expressivity, and general
performance.

Linson et al. (2015) conducted two qualitative eval-
uations with Odessa that is a mono-agent system
including machine listening. The first study included
eight expert musicians playing clarinet, trumpet, cello,
soprano saxophone, guitar, bassoon, piano and vocals.
Six of eight musicians reported ‘a process of familiarisa-
tion and improved collaborative engagement’ while two
musicians were highly dissatisfied. After the first eval-
uation, the authors added a module of excitation to
the architecture so that the system responds to higher
activities in the input. The second qualitative evaluation
had two expert musicians playing soprano saxophone
and guitar. These musicians also participated in the first
evaluation. The evaluation was a trio session including
Odessa. The musicians reported a ‘coherent identity’ of
Odessa regarding both evaluations.

Collins (2011) evaluated LL @ with two expert musi-
cians. One of the experts was a percussionist whereas the
other one was a violinist. Both sessions were presented
as public concerts. The percussionist conceptualised LL
as the extensions of its programmer. The violinist men-
tioned the trade-off between the controllability versus
agency of the system.

Similarly, Aucouturier and Pachet (2005) pointed out
the trade-off between autonomy and reactivity in the
evaluation of Ringomatic @ The evaluation was a
case study of Ringomatic’s interaction with a human
drum player. The authors clarified that Ringomatic could
follow the human performer while preserving the global
continuity.

38 K. TATAR AND P. PASQUIER

Eigenfeldt and Pasquier (2011a) carried out a quan-
titative listening evaluation to evaluate Coming Together:
Free-sound @ Four soundscape compositions were gen-
erated for the evaluation. One composition was generated
by the system. Another one was generated by random.
The remaining two were composed by an expert com-
poser. One of the human composed ones was freely
composed without constraints whereas the second one
was limited with database, methods of processing, over-
all duration, static spatial distribution of four gestures in
four channels. The evaluation survey questions focused
on the soundscape characteristics, compositional suc-
cess, skill level and subjective reaction. In all cases, the
system was better than the random generation.

Hawryshkewich et al. (2010) carried out a case study
with beginner drum players to test if Beatback @ could
improve the self-directed learning of drum players. The
authors reported that ‘the majority of participants felt less
enjoyment and more tension with drum zoning enabled.’

Surges and Dubnov (2013) tested the capabilities of
PyOracle with a case study. PyOracle was pre-
sented in a public concert as a performance with an
expert musician. The case study was a structured impro-
visation. Structured improvisation is free improvisation
with predefined constraints for musical sections. The case
study was a concert performance including a score for
both PyOracle and the human performer. The perfor-
mance was followed up with an interview with the human
performer. The performer emphasised that the flexibility
of PyOracle’s timing mechanism could be elaborated.

Sampaio et al. (2008) presented two empirical eval-
uations assessing the quality and diversity of CinBal-
ada’s musical output. The first evaluation showed
that the participants preferred CinBalada’s output over
random generated or similarity-based rhythms. The sec-
ond evaluation concluded that the participants found the
diversity of CinBalada’s output not too distant from the
diversity of randomly generated rhythms.

In these evaluations, we observe that the details of
methodology are not clear and the justification of the
proposed methodology is missing. The main discus-
sions around the formalisation of expert studies are still
to be done in MuMe. Notice that, the evaluation of
Odessa , LL @ and PyOracle were conducted
through post-performance interviews. These interviews
did not follow a typical qualitative methodology. Regard-
ing all CAT evaluations, the hypothesis is not clear and
the dimensions of evaluation are vague. The evaluations
are exploratory; however, this fact is implicit and there is
no justification of why an exploratory approach is chosen.

7.2.3.2. Evaluation methodologies of Computational
Creativity. This type of empirical evaluations integrate

the methodologies of CC to evaluate MuMe systems.
Many evaluation methodologies have been proposed in
CC, such as Standardised Procedure for Evaluating Cre-
ative Systems (SPECS) (Jordanous, 2012), the Creative
Tripod (Colton, 2008) and FACE/IDEA model (Pease &
Colton, 2011). We have found only one study that incor-
porated a methodology from CC to evaluate musical
agents. Yee-King and d’'Inverno (2016) used MusicCircle,
a timeline-based tagging and annotation system to eval-
uate Speake-System . The conclusion of the qualitative
study was that the system gave a strong sense of inter-
action; however, failed to generate long-term structures.
By no means this survey covers all discussions around
the assessment and evaluation of creativity and proposed
evaluation methodologies in CC. Still, only one study
incorporated a CC methodology to evaluate a musical
agent. Hence, this creates opportunities to integrate CC
evaluation frameworks to musical agents.

7.2.3.3. Questionnaires, correlational studies and rat-
ing scales. Surveys and questionnaires are one of the
main tools that musical agent developers use to evalu-
ate their applications. In comparison to CAT, the par-
ticipant group is not a group of experts in this type
of evaluations. We have found three systems with such
evaluations.

Murray-Rust et al. (2005) conducted a questionnaire
that is similar to the Turing Test (Turing, 1950) to evalu-
ate their rhythm generating system VirtuaLatin . Tur-
ing test is one of the first methodologies that is proposed
to evaluate automatic agents. Murray-Rust et al. (2005)
concluded that the general public could not differentiate
the machine-generated rhythm from a human-generated
one while a higher percentage of expert listeners
could.

Delgado et al. (2009) evaluated Inmamusys 2) by gen-
erating four compositions with the input affective labels
worry, happiness, chaos and worry again. The partici-
pants labelled these compositions with affective states
of sadness, happiness, fear, worry, chaos, and indifference.
The authors reported that the participants affective labels
were in line with the input affect labels of the generated
compositions.

Kirke and Miranda (2015) conducted a listening test
with ten participants to evaluate MASC @ The evalu-
ation aimed to see if the affective states of single agents
could be observed in the melody output of the Multi-
agent system. The results indicated that the affective
states of single agents appeared in the final output. Still,
the authors mentioned that a following this first evalua-
tion with another one with more participants is required
to conclude on a significant result.

Musical Agents

Number of Systems

Cognitive Agents

Reactive Agents

JOURNAL OF NEW MUSIC RESEARCH 39

Model Paradigm

Virtual Env.-Ecosystemic
Virtual Env.-EC

ANN

Statistical Sequence Mod.
Real-World Env.-EC
Real-World Env.-Rule-based
Cognitive Modules

BDI

EEEEEEE SR

Knowledge Representation

Hybrid Agents

Architecture

Figure 21. The number of musical agents per architecture type.

7.3. Future steps of evaluation and benchmarking

We observe that the evaluations of musical agents apply
system specific methodologies. The dimensions of eval-
uations are not clear in most cases and the justification
of why a particular dimension of a system is evaluated
is missing. Given that the hypothesis and the method-
ologies of evaluations vary, no benchmarking tasks were
initiated for musical agents. An obstacle for benchmark-
ing is the reusability and code availability that we mention
in Section 8.3.

The MIR field has developed a set of benchmark-
ing tasks and through the Music Information Retrieval
Evaluation eXchange (MIREX), the MIR field addresses
formally defined challenges. Musical agent researchers
could apply a similar approach for benchmarking. For
example, many systems tackle style imitation tasks and
it could be possible to benchmark these tasks. As of 2017,
Institute Neukom have sent a call for Music Creative Tur-
ing Test 2018.!2 This is a recent benchmarking attempt
for MuMe systems including musical agents.

Although we covered the musical agent evaluations
that applied consensual assessment technique, evaluation
criteria from Computational Creativity, questionnaires,
correlational studies and rating scales; we found no study
that applies behavioural tests, physiological and neu-
rophysiological measurements. behavioural tests assess

12 http://bregman.dartmouth.edu/turingtests/music2018

divergent thinking, convergent thinking, artistic abil-
ity and self assessment. Some examples of behavioural
tests in Music are Measure of Musical Problem Solv-
ing (Vold, 1986) and Measure of Creative Thinking in
Music IT (Webster, 1987). Physiological and neurophysio-
logical measurements analyse the physiological response
of audience. Motion capture, eye tracking, galvanic skin
response, Electroencephalography (EEG) are the exam-
ples of tools to measure audience physiology. It could be
also possible to apply the measurement neural responses
of audience to evaluate the performance of a musical
agent. However, these technologies are particular to spe-
cific areas and applications, and they are not always
available in the institutes that research MuMe.

8. Ad infinitum
8.1. Architectures and algorithms

Figure 21 presents the number of systems for each archi-
tecture type. We observe that the number of reactive
musical agents is the highest, followed by the number
of hybrid musical agents. EC modules appear both in
reactive agents in real-world and virtual environments.
Moreover, cognitive modules show up in cognitive and
hybrid agents. However, the number of cognitive musical
agents is the lowest.

We have found only 16 implementations of musi-
cal agents with cognitive modules, including the hybrid

40 K. TATAR AND P. PASQUIER

Heuristics Machine Learning
Encoded Agent Synthesis

Figure 22. The continuum of autonomy in musical agent design.

musical agents with cognitive models (Figure 21).
Thorisson and Helgasson (2012) present the state of the
art cognitive architectures: Ymir, ACT-R, Soar, NARS,
OSCAR, AKIRA, CLARION, LIDA, Ikon Flux. Except for
CLARION, we have not encounter any study in which
any of these architectures are applied to a MuMe task.
Notice that, cognitive musical agent studies are challeng-
ing because applying a cognitive architecture to a musical
task requires the expertise in Music, Computer Music,
AI, MAS and Cognitive Science. Also, these cognitive
architectures are reasoning architectures and they are not
music cognition architectures. The research on Music
Perception and Cognition is still to be reflected to the
cognitive musical agent studies.

Regarding musical agent studies with statistical
sequence modelling, there is still more to be done to gen-
erate variety in longer musical sections. Pachet (2003)
and Assayag and Dubnov (2004) clarify that Markov
Models fail to represent the conditional probabilities of
sequences longer than the order. Hence, many of the sys-
tems presented in Section 6.1 do not include long-term
memory and one can argue that these systems fail to
produce variety in long-term musical sections and struc-
tures. Dubnov et al. (1998) and Pachet (2003) address
this problem by introducing interactivity to Markov
Models. Hence, the generation of long-term structures
guided by a human performer. Improtek comes forward
with the idea of using scenario generation model, and
combining probabilistic methods with Factor Oracle is
another promising approach to generate long-term con-
tinuity (Déguernel, Vincent, & Assayag, 2018).

ANN algorithms are still to be examined by the musi-
cal agent developers. With the increasing research on
Deep Learning, a variety of new algorithms as well as
improvement of the previous algorithms are presented
in the literature (Arel, Rose, & Karnowski, 2010). Briot,
Hadjeres, and Pachet (2017) surveyed Deep Learning
approaches for musical tasks. Although these systems are
mostly purely generative systems, it is possible to incor-
porate these approaches with MAS to develop musical
agents. Moreover, we have found only one study (sys-
tem mentioned in Section 6.3) that evolves ANN
modules using NeuroEvolution of Augmenting Topolo-
gies (NEAT) (Bown, 2011). NEAT combines ANN with
EC to evolve ANN modules.

Genetic Programming (GP) is a type of EC algorithms.
We have not found any musical agents applying GP in

the system design. GP, especially Cartesian Genetic Pro-
gramming (CGP), has been applied to image recogni-
tion (Harding, Leitner, & Schmidhuber, 2013) as well
as style imitation in Visual Arts (Miller, 2011). More-
over, Wooldridge (2009) proposes the idea of synthe-
sising agents. In all musical agent systems that we have
covered, the authors develop the systems manually. Auto-
matic musical agent design is possible using GP and CGP
algorithms. GP and CGP have been applied to synthesise
audio synthesis architectures (Allik, 2014; Garcia, 2001;
Macret & Pasquier, 2014; Takala, Hahn, Gritz, Geigel, &
Lee, 1993; Wehn, 1998). It is possible to improve the
automatic audio synthesiser design systems to synthesise
musical agents.

8.2. Interdisciplinarity of MuMe

While the International Workshops on Musical Metacre-
ation'3 have covered MuMe topics for five MuMe work-
shops, five MuMe concerts, and three MuMe tutorials
since 2012; the topics of MuMe field has been covered by
various platforms such as International Computer Music
Conference,'* the International Symposium for Music
Information Retrieval,'> the Sound and Music Comput-
ing,'¢ the Association for Computational Creativity,!”
the International Computer Music Association,'® the
International Conference on New Interfaces for Musical
Expression,19 Live Coding,20 the International Sympo-
sium for the Electronics Arts,2! the conferences held
by the Association for the Advancement of Artificial
Intelligence.??

In some cases, the success of MuMe systems are
dependent on the advances in other disciplines. For
example, many agents working with audio or hybrid I/O
include machine listening. Examples of machine listening
tasks are tempo estimation, fundamental pitch detection,
sound similarity, rhythm similarity, melody similarity,
affect estimation in sound, chord analysis, audio thumb-
nailing, novelty detection, etc. The MIR field addresses
these tasks and many are still open research questions.
By default, the success of musical agents with machine
listening relies on the quality of the machine listening
algorithm. Hence, these musical agents are dependent on
the advances in MIR studies.

13 http://musicalmetacreation.org/

4 http://computermusic.org/

15 http://www.ismir.net/

16 http://smcnetwork.org/

7 http://computationalcreativity.net/home/
'8 http://computermusic.org/

19 http://www.nime.org/

20 https://toplap.org/

21 http://www.isea-web.org/

22 https://www.aaai.org/

Therefore, the MIR and MuMe fields naturally bene-
fit from each other by putting forward new problems and
solutions. For example, MuMe uses advanced technolo-
gies of MIR in machine listening and automatic extrac-
tion of higher level music features. Also, musical agents
can utilise the recent developments in Affective Comput-
ing in Sound and Music (Eerola & Vuoskoski, 2013; Fan,
Tatar, Thorogood, & Pasquier, 2017) in machine listen-
ing modules of musical agents. Other MIR areas are also
valuable to musical agents such as musically informed
audio decomposition, tempo and beat tracking, chord
recognition and music structure analysis (Miiller, 2015).
Likewise, MIR can take advantage of the MuMe research.
For example, Collins (2017) proposed autonomous critic
agents in the assessment of musical style, novelty, or qual-
ity. Collins (2017)’s study proposed a model for critic
agents that have listened to more music than humans
could. Such critic agents can be explored for the tasks of
recommendation systems in MIR.

8.3. Design considerations

The developers of musical agents create a system archi-
tecture by going through a design process. Autonomy in
musical agent design ranges from encoded systems to
agent synthesis (Figure 22). The developers design the
system architecture manually in the encoded and heuris-
tics systems. In comparison, agent synthesis is com-
pletely autonomous (Wooldridge, 2009) and can gen-
erate musical agent architectures. We propose to refer
to the phenomena of agent synthesis as Metacreation
of Metacreation (Meta®creation). We claim that Musical
Meta’creation is developing systems that create systems
that partially or completely automatise musical tasks.
Machine Learning lies in the middle of the autonomy
continuum in the musical agent design. The developers
of musical agents often incorporate Machine Learning in
their system design. Machine Learning algorithms have
parameters to be set by the developers. For example, an
EC algorithm has genetic operator probabilities that set
the chance of applying the genetic operators to an indi-
vidual. Another example is the highest order parameter
in Variable Markov Models. The developers often set
these parameters by listening to the system output for
various parameter options. This process is addressed in
the Machine Learning as Interactive Machine Learning or
User-Centered Machine Learning (Bernardo, Zbyszyn-
ski, Fiebrink, & Grierson, 2016; Gillies et al., 2016). The
research on the procedures, tendencies and underlying
factors of developing musical agents is still to be done.
We have encountered three recent studies that stud-
ied the design principles of Computational Creativity
(CC) systems including musical agent systems (Bray and

JOURNAL OF NEW MUSIC RESEARCH 41

Bown, 2014, 2016; Bray, Bown, & Carey, 2017). First,
Bray and Bown (2014) compare user experience of a
DAW and the musical agent Nodal . Second, Bray and
Bown (2016) propose applying the Interaction Design
theory to CC systems. Third, Bray et al. (2017) compared
three generative music systems to understand the effect of
the degree of encapsulation in MuMe systems. The study
included a direct manipulation system, a programmable
interface system and a highly encapsulated system.

Reusability and code availability is another issue of
musical agents. Out of 78 systems, the source codes of
18 systems (23%) are available to the public (Table 1).
This makes the comparison of different musical agents
difficult. Addressing this issue, the manifesto of Muse-
bot framework encourages making musical agents open-
source by publicly sharing the code of the framework
and submitted musical agents (Bown, Carey, & Eigen-
feldt, 2015). Musebot project is a framework for musical
agents which allows interactive live performances with
human performers and multiple musical agents (Eigen-
feldt, 2016b; Eigenfeldt, Bown, & Carey, 2015). The sys-
tem design of the framework is the client/server archi-
tecture in MAS. As of 2017, Musebot framework is com-
patible with MAX, Max for Live, PureData, Process-
ing, SuperCollider, Python, Extempore and JAVA. The
framework provides exciting opportunities such as col-
laborative performances of various musical agents and
autonomous curation of musical agent ensembles. The
Musebot framework provides an opportunity to create a
public repository of musical agents.

Table 1 shows which systems have been presented to
the public within our knowledge. We also include systems
implementing assisted composition tasks, if the systems
have been used to produce a composition that is pre-
sented to the public. Out of 78 system, 39 systems (50%)
have been presented in public venues. Musical agents can
aim for increasing the percentage of systems available to
the public.

8.4. MuMefication

8.4.1. MuMe as a field

There is an objective evidence that MuMe is an interdis-
ciplinary field. In a recent paper devoted to this topic,
Bodily and Ventura (2018) clarify that total 80 papers
were published in the 5 MuMe Workshops between 2012
and 2017. These papers had a total 111 authors. Out of
these 111 authors, 88 (79.2%) published only once, 13
(11.7%) published twice and 8 (7.2%) published three or
more times in MuMe Workshops. Out of these 80 papers,
36 of them had 173 external citations in total. In compar-
ison, there were only 13 instances where MuMe papers
cited other MuMe papers. The higher rate of external

42 K. TATAR AND P. PASQUIER

citations in comparison to internal citations of MuMe
publications, and low re-publication rate of authors indi-
cate that MuMe is a growing interdisciplinary field. (Bod-
ily & Ventura, 2018) mention that the external citations of
MuMe papers appeared in papers presented in a variety of
venues such as the International Conference on Compu-
tational Creativity (ICCC); Computers in Entertainment
(CIE); the Computer Music Journal (CMJ); the Sound
and Music Computing Conference (SMC); and the Inter-
national Computer Music Conference (ICMC).

We propose that MuMe as an interdisciplinary field
inherits both practice of generative music whether it is
artistic, heuristic, creative AI; as well as the scientific
study of Computational Creativity for musical creative
tasks. We think that the term MuMe can provide a for-
malisation of such systems using the definitions and ideas
of Computational Creativity, Generative Art and Artifi-
cial Intelligence. We propose that MuMe as an interdis-
ciplinary field aims to bring together all fields that apply
autonomous approaches for creative musical tasks. Our
definition of MuMe as a field is inclusive in the sense that
it is not creative musical Al because it is not always Al,
it is not a simulation of musical creativity because MuMe
can also cover creativity as it could be, it is not necessar-
ily live-coding because MuMe systems are not necessarily
performed live, it is not artificial life because it also cov-
ers systems that do not simulate a virtual environment. In
addition, we think that CC literature gives an established
ground to explain whether MuMe systems are musically
creative, and if they are, the kind of creativity that MuMe
systems output.

8.4.2. Atypology of MuMe systems

The discussion around the typology of MuMe systems
is still ongoing. Eigenfeldt, Bown, Pasquier, and Mar-
tin (2013) propose a taxonomy of MuMe systems in
seven levels of independence, compositionality, gener-
ativity, proactivity, adaptability, versatility and volition;
ordered from least autonomous to the most. Based on
these seven levels of MuMe systems, we propose six levels
of musical agents which are ordered from the lowest level
to the highest one:

(1) Reactivity: Agents respond to the changes in the
environment in a timely fashion.

(2) Proactivity: Agents can perceive their environment
and plan future actions.

(3) Interactivity: Agent can interact with other agents
(human, artificial, or biological).

(4) Adaptability: Agents learn from their environment
to improve competence or efficiency.

(5) Versatility: Agents are domain independent.

(6) Volition and framing: Agents can explain why
they choose certain actions when asked by other
agents.

The higher levels can inherit properties of the lower
levels whereas the lower levels cannot present the dis-
tinctive properties of the higher levels. Many agents that
we cover demonstrate reactivity behaviours. For example,
Odessa (16) can react to the musical actions of other per-
formers. Odessa also exhibits interactivity by influencing
other agents by actions. Odessa diverges from the current
state of the environment if other agents fail to gener-
ate variability. However, Odessa does not learn from the
environment. In comparison, system exhibits adap-
tivity by training the SOM in the architecture online. The
musical agents that are free of the author’s style or choice
show behaviours of Versatility. For example, the Contin-
uator (50) is a flexible agent that imitates the style of any
performer.

Although the author’s style is not explicitly embedded
in the Continuator, one can argue that by just choos-
ing one generative algorithm over the other, the authors
make implicit stylistic choices on the design of the musi-
cal agent. Thomas et al. (2013) studied the bias of three
style imitation algorithms in melody generation. The
authors compared VMM, FO and MusiCOG (8 and con-
cluded that each algorithm introduced a particular bias
to the melody generation. One can argue that the Con-
tinuator is not completely independent of the author’s
style because the author made the decision on the gen-
erative algorithm that was used in the system design.
Hence, the selection of one melody generation algorithm
rather than others introduced a particular bias to the
Continuator.

The taxonomy of Eigenfeldt et al. (2013) distinguish
MuMe systems based on the dimension of autonomy. In
comparison, Blackwell et al. (2012) propose a taxonomy
of MuMe systems by focusing on the system architec-
ture. The authors propose a new term: live algorithms.
Live algorithms include musical agents as well as purely
generative music systems that do not utilise any input in
the system design. The authors clarify four main inter-
action types of Live Algorithms: autonomy, novelty, par-
ticipation and leadership. The authors present eight case
scenarios of system designs. Each case has a different
combination of incoming audio stream, outgoing audio
stream, human control and three modules of P (listen-
ing/analysis), Q (performing/synthesis) and f (pattern-
ing, reasoning, or intuition). Moreover, the authors state
four types of Live Algorithm behaviours: shadowing, mir-
roring, coupling and negotiation. The authors continue
by presenting implementations of Live Algorithms and
further considerations.

8.5. Challenges and opportunities

There are several reasons why the research and devel-
opment of generative systems and musical agents
matter. The main usage of computational systems
has shifted from rational problem solving. With the
increasing number of personal computational systems,
the percentage of computational power that is used for
entertainment, art and culture increased rapidly.

As aresult, the demand for generative systems includ-
ing musical agents in the creative industries escalated.
This demand arises from the growth of non-linear media.
Non-linear media enable users to choose from the avail-
able options in the media. Hence, non-linear media
are interactive by nature. Two examples of non-linear
media are games and websites. The workload to gener-
ate content for non-linear media is vastly greater than
the workload of linear media production. Hence, there is
an increasing demand for autonomous, adaptive systems
that can fulfil the requirements of non-linear content. In
that sense, we can use musical agents in the industry of
non-linear media as adaptive and autonomous systems
making music. Moreover, these autonomous systems can
enable the personalisation of the content. That is, the soft-
ware can adapt to the user’s specific choices, aesthetics
and requirements.

MAS are applied to simulate real-world phenom-
ena. We can apply musical agents to simulate and study
musical phenomena. Using such simulations, we can
model and study (software or human) agent interactions
and emergent behaviours in musical tasks. In MuMe,
this is referred as modelling creativity as it is (Pasquier
et al.,, 2017). These simulations can help understanding
how we make music.

In comparison to musical creativity as it is, musical
agents introduce new opportunities for the exploration
of musical creativity as it could be. One advantage of soft-
ware agents is that agents can both play music, listen and
exchange messages about their beliefs, desires and inten-
tions during a performance. The rate of communication
can be much higher than that of human communication.
Also, software agents can be shared easily over the inter-
net and this creates new collaboration opportunities that
go beyond logistic restrictions such as the location and
attendance of performers.

Wiggins (2006a) formalises Boden (2015)’s definition
of creativity with a framework called Creative Systems
Framework (CSF). CSF also includes a conceptual space,
arule set that defines the conceptual space, a rule set that
defines how agents can traverse the space, an evaluation
rule set that assesses the value and novelty of concepts.
Wiggins (2006a) concludes that exploratory creativity
at the meta-level is, in fact, transformational creativity.

JOURNAL OF NEW MUSIC RESEARCH 43

Hence, Wiggins (2006a) emphasises search approaches in
Computational Creativity studies.

VMO, FILTER and MASOM are three systems that
apply the idea of search in the conceptual space. These
systems define a conceptual, multi-dimensional musical
space. The dimensions of the space are audio features,
i.e. sound properties. MASOM applies VMM, and FIL-
TER implements FO for statistical sequence modelling.
VMO is a model that combines VMM with FO. Fol-
lowing their work on VOM, Wang and Dubnov (2017)
combine HMM and VMO for the MuMe task of har-
mony generation. Although this work applies style imi-
tation with symbolic representation of music, Wang and
Dubnov (2017) compare VMO with HMM-GMM and
K-Means machine learning algorithms. Wang and Dub-
nov (2017) conclude that in the conceptual feature space,
VMO models temporal relationships whereas HMM-
GMM and K-Means clusters spatially.

VMO, FILTER and MASOM define the musical form
as a traversal in this multi-dimensional space. Since
we can mathematically model a traversal in a multi-
dimensional space, two Metacreative opportunities arise:
style combination and style transformation. Style com-
bination is combining different attributions of styles to
come up with a new style. This corresponds to com-
binational creativity in Boden’s taxonomy of creativity.
However, we do not know if the process of combining
styles is linear in mathematical forms. If we combine
two styles, do we explore a region that is an intersec-
tion for these two styles? A generalised version of this
question is, how do we traverse the conceptual musical
space by combining different attributions of two styles?
Style transformation is applying a transformation func-
tion to a style to come up with another style or a new
style. If we can model musical form and musical style
mathematically, we can also define a function that trans-
forms one style to another. We can also explore variety of
transformation functions to research new styles.

The algorithms that we cover in this survey introduce
biases and some of these biases have been pointed out
in the literature. Thomas et al. (2013) compares Markov
Models, FO, and MusiCOG (8 on the task of melody
generation and concluded that Markov Models and FO
deviated from the training corpus. This indicates that
the authors of Metacreative systems may introduce biases
to the creative output of their systems by choosing one
algorithm over others. Further research is required to
clarify what kind of transformations machine learning
algorithms introduce to musical agents as well as MuMe
systems. Then, we could approach these algorithms as
transformation functions that we apply on musical cre-
ative tasks.

44 K. TATAR AND P. PASQUIER

9. Conclusion

Autonomous computational systems have been applied
to various musical tasks. MAS and Artificial Intelli-
gence technologies exemplify autonomy in computa-
tional systems. Musical agents utilise artificial agent
architectures and MAS to automatise musical tasks
of composition, assisted composition, interpretation,
improvisation, accompaniment, melody, rhythm, and
harmony generation, continuation, style imitation,
arrangement, curation. We surveyed 78 musical agents
systems whose architectures have been presented in peer-
reviewed platforms. We proposed a typology of musical
agents that is framed around the terminologies of Gen-
erative Music, Computational Creativity, Artificial Intel-
ligence, Metacreation and Musical Metacreation fields.
This typology presents musical agents in nine dimensions
of agent architectures, musical tasks, environment types,
number of agents, number of agent roles, communica-
tion types, corpus types, input/output types and human
interaction modality. Our survey has given the details
of musical agents by grouping the systems according to
the architecture types. We incorporated the architecture
types of cognitive, reactive and hybrid architectures in
MAS to classify musical agents. We further categorised
musical agents using the architecture model paradigms.
As a special case, we also used environment types to
further group the reactive musical agents. Within each
section, we grouped musical agents by the musical task
that they carry out. We hope that this organisation of
the survey guides the reader to have an understanding
of what has been done in the interdisciplinary field of
musical agents.

We mentioned in Section 2 that creative tasks lack
quality measures, which highlights the difficulties of eval-
uating musical agents. We suggested a classification of
evaluation of musical agents where the specific evalua-
tion methodologies of systems that we survey is incorpo-
rated to the corresponding classes. We ended this section
by highlighting a possibility of benchmarking tasks for
musical agents. We started our final section with an over-
look of architectures and algorithms that have been cov-
ered by musical agents, which indicate the opportunities
of different architecture types that can be applied to musi-
cal agents. Towards our conclusion, we introduce Musical
Metacreation as a field, mention the interdisciplinarity of
the field and design consideration of MuMe systems. We
proposed six levels of musical agents, which is a deriva-
tion of seven levels of MuMe systems proposed in the
literature. Before conclusion, we remark the challenges
and opportunities in musical agents, and indicate sev-
eral reasons why the research of musical agents as well
as MuMe matters.

The studies of MuMe field aim to guide musicians
and artists to understand musical creativity and find new
ways of musical creativity. We hope that this review of
musical agents helps both researchers and practitioners
to understand and design autonomous software making
music. Almost all studies mentioned in this review are
presented in the last two decades. With the increasing
research on MAS and AIl, we are confident that musi-
cal agents will influence and contribute to how we make
music in the future.

Acknowledgements

We thank the anonymous reviewers for their insights and use-
ful comments. We would like to thank our colleagues Ronald
Boersen, Mirjana Prpa, Jianyu Fan, and Cale Plut for their sug-
gestions and proofreading this paper. We also thank Ronald
Boersen for helping us with Figure 2.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research was funded by the Natural Sciences and Engi-
neering Research Council of Canada Discovery programme,
and Social Sciences and Humanities Research Council of
Canada Insight programme.

ORCID

Kivang Tatar ‘© http://orcid.org/0000-0003-4133-8641

References

Al-Rifaie, A. M., & Al-Rifaie, M. M. (2015). Generative music
with stochastic diffusion search. In C. Johnson, A. Carballal,
& J. Correia (Eds.), Evolutionary and biologically inspired
music, sound, art and design (pp. 1-14). Lecture Notes in
Computer Science, Vol. 9027. Springer International.

Allik, A. (2014). Gene expression synthesis. In Proceedings of
the joint conference ICMC14-SMCI14.

Amorim, A., Gées, L. E W,, da Silva, A. R., & Fran¢sa, C. (2017).
Creative flavor pairing: Using RDC metric to generate and
assess ingredients combinations. In Proceedings of the eight
international conference on computational creativity (ICCC
2017).

Ando, D., & Iba, H. (2005). Real-time musical interaction
between musician and multi-agent system. In Proceedings of
the 8th generative art conference.

Arel, I, Rose, D. C., & Karnowski, T. P. (2010). Deep machine
learning - a new frontier in artificial intelligence research.
IEEE Computational Intelligence Magazine, 5(4), 13-18.

Arges, K., Forth, J., & Wiggins, G. A. (2016). Evaluation of
musical creativity and musical metacreation systems. Com-
puters in Entertainment (CIE) - Special Issue on Musical
Metacreation, Part II, 14(3

Arias, J., Desainte-Catherine, M., & Dubnov, S. (2016). Auto-
matic construction of interactive machine improvisation

http://orcid.org/0000-0003-4133-8641

scenarios from audio recordings. In The fourth international
workshop on musical metacreation (MUME 2016).

Assayag, G., Bloch, G., Chemillier, M., Cont, A., & Dubnov,
S. (2006). Omax brothers: A dynamic topology of agents
for improvization learning. In Proceedings of the 1st ACM
workshop on audio and music computing multimedia (pp.
125-132). ACM Press.

Assayag, G., & Dubnov, S. (2004). Using factor oracles for
machine improvisation. Soft Computing, 8(9), 604-610.

Assayag, G., Dubnov, S., & Delerue, O. (1999). Guessing the
composer’s mind: Applying universal prediction to musical
style. In Proceedings of the 1999 international computer music
conference, ICMC 1999, 6.

Aucouturier, J.-J. (2011). Artificial evolution of tuning systems.
In A-life for music: Music and computer models of living
systems. A-R Editions.

Aucouturier, J.-J., & Pachet, E. (2005). Ringomatic: A real-
time interactive drummer using constraint-satisfaction and
drum sound descriptors. In Proceedings of the international
conference on music information retrieval (pp. 412-419).

Baltazar, P, de la Hogue, T., & Desainte-Catherine, M.. (2014).
Demo: i-score, an interactive sequencer for the intermedia
arts.

Bernardo, E, Zbyszynski, M., Fiebrink, R., & Grierson, M.
(2016). Interactive machine learning for end-user innova-
tion. In Proceedings of AAAI spring symposium. American
Association for Artificial Intelligence (AAAI).

Bevilacqua, F, Zamborlin, B., Sypniewski, A., Schnell, N,,
Guédy, E,, & Rasamimanana, N. (2009). Continuous realtime
gesture following and recognition. In International gesture
workshop (pp. 73-84). Springer.

Beyls, P. (2007). Interaction and self-organisation in a society
of musical agents. In Proceedings of ECAL 2007 workshop on
music and artificial life (MusicAL 2007).

Beyls, P. (2008). On-line development of man-machine rela-
tionships: Motivation-driven musical interaction. In Pro-
ceedings of the 11th generative art conference.

Beyls, P. (2009). Interactive composing as the expressions of
autonomous machine motivations. In Proceedings of the
international computer music conference (ICMC 2009).

Beyls, P. (2011). Structural coupling in a society of musical
agents. In A-life for music: Music and computer models of
living systems. A-R Editions.

Beyls, P. (2012). Autonomy, influence and emergence in an
audiovisual ecosystem. In Proceedings of the generative arts
conference, Rome, Italy.

Beyls, P, Bernardes, G., & Caetano, M. (2015). EarGram actors:
An interactive audiovisual system based on social behavior.
Journal of Science and Technology of the Arts, 7(1), 43-54.

Biles, J. (1994). GenJam: A genetic algorithm for generating
jazz solos. In Proceedings of the international computer music
conference (pp. 131-131). International Computer Music
Association.

Biles, J. A. (2013). Performing with technology: Lessons learned
from the GenJam project. In Proceedings of the 2nd interna-
tional workshop on musical metacreation (MUME 2013).

Bizzocchi, J., Eigenfeldt, A., & Thorogood, M. (2015). Gener-
ating affect: Applying valence and arousal values to unified
video, music, and sound generation system. In Proceedings of
the 18th generative art conference (Vol. 49, pp. 621-630).

Blackwell, T., Bown, O., & Young, M. (2012). Live algo-
rithms: Towards autonomous computer improvisers. In J.

JOURNAL OF NEW MUSIC RESEARCH 45

McCormack, & M. d'Inverno (Eds.), Computers and creativ-
ity (pp. 147-174). Berlin: Springer.

Blackwell, T., & Young, M. (2004). Self-organised music. Organ-
ised Sound, 9(02), 123-136.

Bloch, G., Dubnov, S., & Assayag, G. (2008). Introduc-
ing video features and spectral descriptors in the omax
improvisation system. In International computer music
conference 08.

Boden, M. A. (2009). Computer models of creativity. AI Maga-
zine, 30(3), 23.

Boden, M. A. (2015). Creativity and ALife. Artificial Life, 21(3),
354-365.

Bodily, P. M., & Ventura, D. (2018). Musical metacreation: Past,
present, and future. In Proceedings of the sixth international
workshop on musical metacreation (p. 5).

Bown, O. (2011). Experiments in modular design for the cre-
ative composition of live algorithms. Computer Music Jour-
nal, 35(3), 73-85.

Bown, O., Carey, B., & Eigenfeldt, A. (2015). Manifesto for
a musebot ensemble: A platform for live interactive per-
formance between multiple autonomous musical agents. In
Proceedings of the international symposium of electronic art
2015 (ISEA 2015).

Bown, O., & Martin, A. (2013). Backgammon: Process-based
musical explorations using the agent designer. In Proceedings
of the 9th ACM conference on creativity & cognition, Ce»C’13
(pp- 390-391). New York, NY: ACM Press.

Bown, O., McCormack, J., & Kowaliw, T. (2011). Ecosys-
temic methods for creative domains: Niche construction and
boundary formation. In 2011 IEEE symposium on artificial
life (ALIFE) (pp. 132-139).

Bray, L., & Bown, O. (2014). Linear and non-linear compo-
sition systems: User experience in nodal and pro tools. In
Proceedings of the Australian computer music association
conference.

Bray, L., & Bown, O. (2016). Applying core interaction
design principles to computational creativity. In Proceed-
ings of the seventh international conference on computational
creativity.

Bray, L., Bown, O., & Carey, B. (2017). How can we deal with
the design principle of visibility in highly encapsulated com-
putationally creative systems? In Proceedings of the eighth
international conference on computational creativity.

Bretan, M., & Weinberg, G. (2016). A survey of robotic
musicianship. Communications of the ACM, 59(5), 100-
109.

Briot, J.-P.,, Hadjeres, G., & Pachet, E. (2017). Deep learning
techniques for music generation - a survey. arXiv preprint
arXiv:1709.01620.

Brooks, R. A. (1986). A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation, 2(1),
14-23.

Brooks, R. A. (1995). Intelligence without reason. In L. Steels
& R. A. Brooks (Eds.), The artificial life route to artificial
intelligence: Building embodied, situated agents (pp. 25-81).
Hillsdale, NJ: L. Erlbaum Associates.

Bryson, J. (1995). The reactive accompanist: Adaptation and
behavior decomposition in a music system. In L. Steels (Ed.),
The biology and technology of intelligent autonomous agents
(pp. 365-376). Berlin: Springer.

Buchanan, B. G. (2001). Creativity at the metalevel AAAI-2000
presidential address. AI Magazine, 22(3), 16.

46 K. TATAR AND P. PASQUIER

Camurri, A., Catorcini, A., Innocenti, C., & Massari, A.
(1995). Music and multimedia knowledge representation
and reasoning: The HARP system. Computer Music Journal,
19(2), 34-1.

Casella, P, & Paiva, A. (2001). Magenta: An architecture for
real time automatic composition of background music. In
Intelligent virtual agents (pp. 224-232). Springer.

Cassell, J., Sullivan, J., Churchill, E., & Prevost, S. (2000).
Embodied conversational agents. London: MIT Press. Google-
Books-ID: tHiKZGh9t7sC.

Collins, N. (2005). Drumtrack: Beat induction from an acous-
tic drum kit with synchronised scheduling. In Proceedings of
international computer music conference (ICMC).

Collins, N. (2006). BBCut2: Integrating beat tracking and on-
the-fly event analysis. Journal of New Music Research, 35(1),
63-70.

Collins, N. (2008). Reinforcement learning for live musical
agents. In Proceedings of the international computer music
conference (ICMC), Belfast.

Collins, N. (2011). LL: Listening and learning in an interactive
improvisation system. Technical report, University of Sussex.

Collins, N. (2017). Towards machine musicians who have lis-
tened to more music than us: Audio database-led algorith-
mic criticism for automatic composition and live concert
systems. Computers in Entertainment, 14(3), 1-14.

Colton, S. (2008). Creativity versus the perception of creativ-
ity in computational systems. In AAAI spring symposium:
Creative intelligent systems (Vol. 8).

Colton, S., & Wiggins, G. A. (2012). Computational creativ-
ity: The final frontier. Frontiers in Artificial Intelligence and
Applications, 242, 21-26.

Conklin, D. (2013). Multiple viewpoint systems for music class-
sification. Journal of New Music Research, 42(1), 19-26.

Cont, A., Dubnov, S., & Assayag, G. (2007). Anticipatory model
of musical style imitation using collaborative and compet-
itive reinforcement learning. In Anticipatory behavior in
adaptive learning systems (pp. 285-306). Springer.

Csikszentmihalyi, M. (2008). Flow: The psychology of optimal
experience. (1st ed.). New York, NY: Harper Perennial Mod-
ern Classics.

Dahlstedt, P, & Nordahl, M. G. (2001). Living melodies:
Coevolution of sonic communication. Leonardo, 34(3),
243-248.

Delgado, M., Fajardo, W., & Molina-Solana, M. (2009). Inma-
musys: Intelligent multiagent music system. Expert Systems
with Applications, 36(3), 4574-4580.

Déguernel, K., Vincent, E., & Assayag, G. (2018). Probabilistic
factor oracles for multidimensional machine improvisation.
Computer Music Journal, 42(2), 52-66.

Donze, A., Valle, R., Akkaya, I, Libkind, S., Seshia, S. A., & Wes-
sel, D. (2014). Machine improvisation with formal specifica-
tions. In Proceedings of the joint conference ICMC14-SMC14
(p. 8).

Dubnov, S., & Assayag, G. (2005). Improvisation planning and
jam session design using concepts of sequence variation and
flow experience. In Proceedings of sound and music comput-
ing (p. 7).

Dubnov, S., Assayag, G., & Cont, A. (2007). Audio oracle: A new
algorithm for fast learning of audio structures. In Proceedings
of international computer music conference.

Dubnov, S., Assayag, G., & Cont, A. (2011). Audio oracle anal-
ysis of musical information rate. In Proceedings of the fifth

IEEE international conference on semantic computing (ICSC)
(pp. 567-571).

Dubnov, S., Assayag, G., & El-Yaniv, R. (1998). Universal
classification applied to musical sequences. In Proceed-
ings of the 1998 international computer music conference,
ICMC.

Dubnov, S., McAdams, S., & Reynolds, R. (2006). Structural and
affective aspects of music from statistical audio signal anal-
ysis. Journal of the American Society for Information Science
and Technology, 57(11), 1526-1536.

Eerola, T., & Vuoskoski, J. K. (2013). A review of music and
emotion studies: Approaches, emotion models, and stim-
uli. Music Perception: An Interdisciplinary Journal, 30(3),
307-340.

Eigenfeldt, A. (2008). Emergent rhythms through multi-agency
in Max/MSP. In R. Kronland-Martinet, S. Ystad, & K. Jensen
(Eds.), Computer music modeling and retrieval. Sense of
sounds (pp. 368-379). Lecture Notes in Computer Science,
Vol. 4969. Berlin: Springer.

Eigenfeldt, A. (2009). The evolution of evolutionary software:
Intelligent rhythm generation in kinetic engine. In M. Gia-
cobini, A. Brabazon, S. Cagnoni, G. A. D. Caro, A. Ekért, A. L.
Esparcia-Alcazar, M. Farooq, A. Fink, & P. Machado (Eds.),
Applications of evolutionary computing (pp. 498-507). Lec-
ture Notes in Computer Science, Vol. 5484. Berlin: Springer.

Eigenfeldt, A. (2010). Coming together: Composition by nego-
tiation. In Proceedings of the 18th ACM international confer-
ence on multimedia (pp. 1433-1436). ACM.

Eigenfeldt, A. (2011). Multi-agent modeling of complex rhyth-
mic interactions in realtime performance. In A-life for music:
Music and computer models of living systems. A-R Editions.

Eigenfeldt, A. (2014). Generating structure-towards large-scale
formal generation. In Proceedings of the artificial intelligence
and interactive digital entertainment conference.

Eigenfeldt, A. (2016a). Exploring moment-form in generative
music. In Proceedings of 13th sound and music conference.
Eigenfeldt, A. (2016b). Musebots at one year: A review. In
Proceedings of the 4th international workshop on musical

metacreation (MUME 2016).

Eigenfeldt, A., Bown, O., & Carey, B. (2015). Collaborative
composition with creative systems: Reflections on the first
musebot ensemble. In Proceedings of the sixth international
conference on computational creativity, June (p. 134).

Eigenfeldt, A., Bown, O., Pasquier, P, & Martin, A. (2013).
Towards a taxonomy of musical metacreation: Reflections on
the first musical metacreation weekend. In Proceedings of the
2nd international workshop on musical metacreation (MUME
2013).

Eigenfeldt, A., & Pasquier, P. (2009). A realtime generative
music system using autonomous melody, harmony, and
rhythm agents. In Proceedings of the 12th generative art con-
ference.

Eigenfeldt, A., & Pasquier, P. (2011a). Negotiated content: Gen-
erative soundscape composition by autonomous musical
agents in coming together: Freesound. In Proceedings of the
second international conference on computational creativity,
Mexico City (pp. 27-32).

Eigenfeldt, A., & Pasquier, P. (2011b). A sonic eco-system of
self-organising musical agents. In 9th European event on
evolutionary and biologically inspired music, sound, art and
design (EvoMusArt 2011) (Vol. 6625, pp. 283-292). Torino:
Springer Verlag.

Eigenfeldt, A., & Pasquier, P. (2012). Creative agents, curatorial
agents, and human-agent interaction in coming together. In
Proceedings of sound and music computing (pp. 181-186).

Einbond, A., Borghesi, R., Schwarz, D., & Schnell, N. (2016).
Introducing CatOracle: Corpus-based concatenative impro-
visation with the Audio Oracle algorithm. In Proceedings of
the international computer music conference (pp. 140-146).

Emirbayer, M., & Mische, A. (1998). What is agency. American
Journal of Sociology, 103(4), 962-1023.

Fan, J.,, Tatar, K., Thorogood, M., & Pasquier, P. (2017).
Ranking-based emotion recognition for experimental music.
In Proceedings of the international symposium on music infor-
mation retrieval (ISMIR) 2017.

Ferber, J., Gutknecht, O., & Michel, E (2003). From agents to
organizations: An organizational view of multi-agent sys-
tems. In International workshop on agent-oriented software
engineering (pp. 214-230). Springer.

Fowler, C. B. (1967). The museum of music: A history of
mechanical instruments. Music Educators Journal, 54(2), 45.

Franois, A. R.], Chew, E., & Thurmond, D. (2011). Performer-
centered visual feedback for human-machine improvisation.
Computers in Entertainment, 9(3), 1-13.

Franois, A. R., Schankler, 1., & Chew, E. (2013). Mimi4x: An
interactive audio-visual installation for high-level structural
improvisation. International Journal of Arts and Technology,
6(2),138-151.

Frayling, C. (1994). Research in art and design (Royal college of
art research papers, Vol 1, No 1, 1993/4). Royal College of Art
Research Papers 1(1).

Galanter, P. (2003). What is generative art complexity theory as
a context for art theory. In Proceedings of the 6th generative
art conference.

Garcia, R. (2001). Automatic generation of sound synthesis tech-
niques (Ph.D. Dissertation). MIT.

George, D. (2008). How the brain might work: A hierarchi-
cal and temporal model for learning and recognition (Ph.D.
Dissertation). Stanford University.

Gifford, T. (2013). Appropriate and complementary rhythmic
improvisation in an interactive music system. In S. Hol-
land, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music
and human-computer interaction. Springer Series on Cultural
Computing. London: Springer London.

Gifford, T. M., & Brown, A. R. (2010). Anticipatory timing in
algorithmic rhythm generation. In Proceedings of the Aus-
tralasian computer music conference 2010 (pp. 21-28). Aus-
tralasian Computer Music Association (ACMA).

Gillies, M., Lee, B., dAlessandro, N., Tilmanne, J., Kulesza,
T., Caramiaux, B., ... Amershi, S. (2016). Human-centred
machine learning (pp. 3558-3565). New York, NY: ACM
Press.

Gimenes, M., & Miranda, E. R. (2011). An ontomemetic
approach to musical intelligence. In A-life for music: Music
and computer models of living systems. A-R Editions.

Gimenes, M., Miranda, E. R., & Johnson, C. (2005). Towards
an intelligent rhythmic generator based on given examples:
A memetic approach. In Digital music research network sum-
mer conference (pp. 41-46).

Gimenes, M., Miranda, E. R., & Johnson, C. (2007). Musician-
ship for robots with style. In Proceedings of the 7th interna-
tional conference on new interfaces for musical expression (pp.
197-202). ACM.

JOURNAL OF NEW MUSIC RESEARCH 47

Gold, R., & Maeda, J. (2007). The plenitude: Creativity, innova-
tion, and making stuff. Cambridge: The MIT Press.

Gomila, A., & Miiller, V. C. (2012). Challenges for artifi-
cial cognitive systems. Journal of Cognitive Science, 13(4),
453-469.

Harding, S., Leitner, J., & Schmidhuber, J. (2013). Cartesian
genetic programming for image processing. In R. Riolo,
E. Vladislavleva, M. D. Ritchie, & J. H. Moore (Eds.),
Genetic programming theory and practice X, genetic and
evolutionary computation (pp. 31-44). New York: Springer.
doi:10.1007/978-1-4614-6846-2_3.

Hartholt, A., Traum, D., Marsella, S. C., Shapiro, A., Stra-
tou, G., Leuski, A., ... Gratch, J. (2013). All together now:
Introducing the virtual human toolkit. In 13th international
conference on intelligent virtual agents.

Hawryshkewich, A., Pasquier, P, & Eigenfeldt, A. (2010). Beat-
back: A real-time interactive percussion system for rhythmic
practise and exploration. Proceedings of the tenth interna-
tional conference on new interfaces for musical expression (pp.
100-105).

Herremans, D., Chuan, C.-H., & Chew, E. (2017). A functional
taxonomy of music generation systems. ACM Computing
Surveys, 50(5), 1-30.

Heylighen, F. (2016). Stigmergy as a universal coordination
mechanism I: Definition and components. Cognitive Systems
Research, 38, 4-13.

Hsu, W. (2010). Strategies for managing timbre and interac-
tion in automatic improvisation systems. Leonardo Music
Journal, 20(1), 33-39.

Huron, D. B. (2014). Sweet anticipation: Music and the psychol-
ogy of expectation. Cambridge: MIT Press.

Jordanous, A. (2012). A standardised procedure for evaluating
creative systems: Computational creativity evaluation based
on what it is to be creative. Cognitive Computation, 4(3),
246-279.

Kimball, J. P. (1975). Syntax and semantics. Cambridge, MA:
Academic Press.

Kirke, A., & Miranda, E. (2011). A biophysically constrained
multi-agent systems approach to algorithmic composition
with expressive performance. In A-life for music: Music and
computer models of living systems. A-R Editions.

Kirke, A., & Miranda, E. (2015). A multi-agent emotional soci-
ety whose melodies represent its emergent social hierarchy
and are generated by agent communications. Journal of Arti-
ficial Societies and Social Simulation, 18(2), 16.

Kohonen, T. (1982). Self-organized formation of topologi-
cally correct feature maps. Biological Cybernetics, 43(1),
59-69.

Kohonen, T. (1998). The self-organizing map. Neurocomputing,
21(1-3), 1-6.

Lartillot, O., Cereghetti, D., Eliard, K., & Grandjean, D.
(2013). A simple, high-yield method for assessing struc-
tural novelity. In G. Luck & O. Brabant (Eds.), Proceed-
ings of the 3rd international conference on music & emo-
tion (ICME3), Jyviskyld, Finland, 11th—15th June 2013. ISBN
978-951-39-5250-1. University of Jyviskyld, Department of
Music.

Lefebvre, A., & Lecroq, T. (2002). A heuristic for comput-
ing repeats with a factor oracle: Application to biological
sequences. International Journal of Computer Mathematics,
79(12), 1303-1315.

48 K. TATAR AND P. PASQUIER

Levisohn, A., & Pasquier, P. (2008). BeatBender: Subsumption
architecture for autonomous rhythm generation. In Proceed-
ings of the ACM international conference on advances in
computer entertainment technologies (ACE 2008) (pp. 51-58).

Lévy, B., Bloch, G., & Assayag, G. (2012). OMaxist dialectics. In
Proceedings of the international conference on new interfaces
for musical expression (NIME) (pp. 137-140).

Lewis, G. E. (2000). Too many notes: Computers, complexity
and culture in voyager. Leonardo Music Journal, 10, 33-39.

Linson, A., Dobbyn, C., Lewis, G. E., & Laney, R. (2015).
A subsumption agent for collaborative free improvisation.
Computer Music Journal, 39(4), 96-115.

Lynch, M. E (2014). Motivation, microdrives and microgoals
in mockingbird. In Proceedings of 3rd international workshop
on musical metacreation (MUME 2014).

Macret, M., & Pasquier, P. (2014). Automatic design of sound
synthesizers as pure data patches using coevolutionary
mixed-typed cartesian genetic programming. In Proceed-
ings of the 2014 conference on genetic and evolutionary
computation, GECCO 14 (pp. 309-316). New York, NY:
ACM.

Martin, A., & Bown, O. (2013). The agent designer toolkit.
In Proceedings of the 9th ACM conference on creativity &
cognition, C&+C ’13 (pp. 386-387). New York, NY: ACM.

Martin, A,, Jin, C. T., & Bown, O. (2011). A toolkit for designing
interactive musical agents. In Proceedings of the 23rd Aus-
tralian computer-human interaction conference, OzCHI ’11
(pp. 194-197). New York, NY: ACM.

Martin, A., Jin, C. T., & Bown, O. (2012). Implementation of
a real-time musical decision-maker. In Proceedings of the
Australasian computer music conference.

Martin, A, Jin, C. T., Carey, B., & Bown, O. (2012). Creative
experiments using a system for learning high-level perfor-
mance structure in ableton live. In Proceedings of the sound
and music computing conference.

Martin, A, Jin, C. T,, van Schaik, A., & Martens, W. L. (2010).
Partially observable Markov decision processes for inter-
active music systems. In Proceedings of the international
computer music conference.

Martins, J. M., & Miranda, E. R. (2006). A connectionist archi-
tecture for the evolution of rhythms. In Applications of evo-
lutionary computing (pp. 696-706). Springer.

Martins, J. M., & Miranda, E. R. (2007). Emergent rhythmic
phrases in an A-Life environment. In Proceedings of ECAL
2007 workshop on music and artificial life (MusicAL 2007)
(pp. 10-14).

Martins, J. M., & Miranda, E. R. (2008). Breeding rhythms
with artificial life. In Proceedings of the sound and music
conference. Citeseer.

Maxwell,].B., Eigenfeldt, A., Pasquier, P., Gonzalez Thomas, N.
(2012). MusiCOG: A cognitive architecture for music learn-
ing and generation. In Proceedings of the sound and music
computing conference (p. 9).

Maxwell, J. B., Pasquier, P,, & Eigenfeldt, E. (2009). Hierar-
chical sequential memory for music: A cognitive model. In
Proceedings of the 10th international conference for music
information retrieval.

McCormack, J., & Bown, O. (2009). Life’s what you make:
Niche construction and evolutionary art. In Workshops
on applications of evolutionary computation (pp. 528-537).
Springer.

McCormack, J., Mcllwain, P, Lane, A., & Dorin, A. (2007).
Generative composition with Nodal. In Workshop on music
and artificial life (part of ECAL 2007), Lisbon, Portugal.

Miller, J. Eed (2011). Cartesian genetic programming. Natural
Computing Series. Berlin: Springer.

Minsky, M. (1986). The society of mind. New York, NY: Simon
and Schuster.

Miranda, E. R., & Biles, A. (Eds.). (2007). Evolutionary com-
puter music. London: Springer.OCLC: 0cm80332658.

Miranda, E. R, Kirke, A., & Zhang, Q. (2010). Artifi-
cial evolution of expressive performance of music: An
imitativemulti-agent systems approach. Computer Music
Journal, 34(1), 80-96.

Mitchell, T. M. (1997). Machine learning. New York, NY:
McGraw-Hill Education.

Moreira, J., Roy, P, & Pachet, F. (2013). Virtualband: Inter-
acting with stylistically consistent agents. In Proceedings of
the 14th international society for music information retrieval
conference (pp. 341-346).

Miiller, M. (2015). Fundamentals of music processing. Cham:
Springer International.

Murray-Rust, D. (2008). Musical acts and musical agents: The-
ory, implementation and practice (Ph.D. dissertation).

Murray-Rust, D., & Smaill, A. (2005). Musical acts and musical
agents. Proceedings of the 5th open workshop of MUSICNET-
WORK: Integration of music in multimedia applications (to
Appear) 10.

Murray-Rust, D., & Smaill, A. (2011). Towards a model of musi-
cal interaction and communication. Artificial Intelligence,
175(9-10), 1697-1721.

Murray-Rust, D., Smaill, A., & Edwards, M. (2006). MAMA:
An architecture for interactive musical agents. Frontiers in
Artificial Intelligence and Applications, 141, 36.

Murray-Rust, D., Smaill, A., & Maya, M. (2005). VirtuaLatin
- towards a musical multi-agent system. In Sixth interna-
tional conference on computational intelligence and multime-
dia applications, 2005 (pp. 17-22).

Navarro, M., Corchado, J. M., & Demazeau, Y. (2014). A musi-
cal composition application based on a multiagent system to
assist novel composers. International conference on computa-
tional creativity.

Navarro, M., Corchado, J. M., & Demazeau, Y. (2016). MUSIC-
MAS: Modeling a harmonic composition system with virtual
organizations to assist novice composers. Expert Systems
with Applications, 57, 345-355.

Nika, J., Bouche, D., Bresson, J., Chemillier, M., & Assayag,
G. (2015). Guided improvisation as dynamic calls to an
offline model. In Sound and music computing (SMC).

Nika, J., & Chemillier, M. (2012). Improtek: integrating har-
monic controls into improvisation in the filiation of OMax.
In International computer music conference (ICMC) (pp.
180-187).

Nika, J., Chemillier, M., & Assayag, G. (2017). ImproteK: Intro-
ducing scenarios into human-computer music improvisa-
tion. Computers in Entertainment, 14(2), 1-27.

Nika, J., Echeveste, J., Chemillier, M., & Giavitto, J.-L. (2014).
Planning human-computer improvisation. In International
computer music conference (p. 330).

Nort, D. V,, Oliveros, P, & Braasch, J. (2013). Electro/acoustic
improvisation and deeply listening machines. Journal of New
Music Research, 42(4), 303-324.

Pachet, E. (2000). Rhythms as emerging structures. In Proceed-
ings of 2000 international computer music conference, Berlin,
ICMA.

Pachet, F. (2003). The continuator: Musical interaction with
style. Journal of New Music Research, 32(3), 333-341.

Pachet, E (2004). Beyond the cybernetic jam fantasy: The con-
tinuator. Computer Graphics and Applications, IEEE, 24(1),
31-35.

Paiva, A., Andersson, G., Ho0k, K., Mourao, D., Costa, M., &
Martinho, C. (2002). Sentoy in fantasya: Designing an affec-
tive sympathetic interface to a computer game. Personal and
Ubiquitous Computing, 6(5-6), 378-389.

Pasquier, P, Eigenfeldt, A., Bown, O., & Dubnov, S. (2017).
An introduction to musical mestacreation. Computers in
Entertainment, 14(2), 1-14.

Pease, A., & Colton, S. (2011). On impact and evaluation in
computational creativity: A discussion of the Turing test and
an alternative proposal. In Proceedings of the AISB sympo-
sium on Al and philosophy.

Peter, M. (2009). Milieus of creativity: The role of places, envi-
ronments, and spatial. In P. Meusburger, J. Funke, & E. Wun-
der (Eds.), Knowledge and space; Vol. 2. Milieus of creativity:
An interdisciplinary approach to spatiality of creativity (pp.
97-153). Dordrecht: Springer.

Plans, D., & Morelli, D. (2011). Using coevolution in music
improvisation. In A-life for music: Music and computer mod-
els of living systems. A-R Editions.

Plomp, R., & Levelt, W. J. M. (1965). Tonal consonance and
critical bandwidth. The Journal of the Acoustical Society of
America, 38(4), 548-560.

Puterman, M. L. (1994). Markov decision processes: Discrete
stochastic dynamic programming. Wiley series in probability
and mathematical statistics. Applied Probability and Statis-
tics Section. New York: John Wiley & Sons.

Rigau, J., Feixas, M., & Sbert, M. (2008). Informational aes-
thetics measures. IEEE Computer Graphics and Applications,
28(2), 24-34.

Ritchie, G. (2014). Evaluating quality in creative systems.

Roads, C. (2015). Composing electronic music: A new aesthetic.
Oxford: Oxford University Press.

Rowe, R. (1992). Machine listening and composing with
cypher. Computer Music Journal, 16(1), 43.

Russell, J. A. (1980). A circumplex model of affect. Jour-
nal of Personality and Social Psychology, 39(6), 1161-
1178.

Russell, S. J. S. J., & Norvig, P. (2010). Artificial intelligence: A
modern approach. (3rd ed.). Prentice Hall series in artificial
intelligence. Upper Saddle River, NJ: Prentice Hall.

Sampaio, P. A., Ramalho, G., & Tedesco, P. (2008). CinBalada: A
multiagent rhythm factory. Journal of the Brazilian Computer
Society, 14(3), 31-49.

Simon, H. A. (1960). The new science of management decision.
The Ford Distinguished Lectures, Vol. xii. New York, NY:
Harper & Brothers. doi:10.1037/13978-000.

Sivanandam, S. N., & Deepa, S. N. (2007). Introduction to
genetic algorithms. Berlin: Springer.

Smalley, D. (1997). Spectromorphology: Explaining sound-
shapes. Organised Sound, 2(02), 107-126.

Smith, B. D., & Deal, W. S. (2014). ML.* Machine learning
library as a musical partner in the computer-acoustic com-
position flight. In the Proceedings of the joint conference
ICMC14-SMC14 (Vol. 2014).

JOURNAL OF NEW MUSIC RESEARCH 49

Smith, B. D., & Garnett, G. E. (2012). Reinforcement learn-
ing and the creative, automated music improviser. In P.
Machado, J. Romero, & A. Carballal (Eds.), Evolutionary
and biologically inspired music, sound, art and design (pp.
223-234). Lecture Notes in Computer Science, Vol. 7247.
Berlin: Springer.

Sumpter, D. J., & Beekman, M. (2003). From nonlinearity
to optimality: Pheromone trail foraging by ants. Animal
Behaviour, 66(2), 273-280.

Surges, G., & Dubnov, S. (2013). Feature selection and com-
position using PyOracle. In Ninth artificial intelligence and
interactive digital entertainment conference.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction. Adaptive Computation and Machine Learning.
Cambridge, MA: A Bradford Book.

Takala, T., Hahn, J., Gritz, L., Geigel, J., & Lee, J. (1993). Using
physically based models and genetic algorithms for func-
tional composition of sound signals, synchronized to ani-
mated motion. In Proceedings of the international computer
music conference (pp. 180-185).

Tatar, K., Macret, M., & Pasquier, P. (2016). Automatic synthe-
sizer preset generation with presetGen. Journal of New Music
Research, 45(2), 124-144.

Tatar, K., & Pasquier, P. (2017). MASOM: A musical agent
architecture based on self organizing maps, affective com-
puting, and variable Markov models. In Proceedings of the
5th international workshop on musical metacreation (MUME
2017).

Tatar, K., Pasquier, P., & Siu, R. (2018). REVIVE: An audio-
visual performance with musical and visual Al agents (pp.
1-6). New York, NY: ACM Press.

Thom, B. (2000a). BoB: An interactive improvisational music
companion. In Proceedings of the fourth international confer-
ence on autonomous agents, AGENTS 00 (pp. 309-316). New
York, NY: ACM.

Thom, B. (2000b). Unsupervised learning and interactive
jazz/blues improvisation. In Proceedings of the seventeenth
national conference on artificial intelligence and twelfth con-
ference on innovative applications of artificial intelligence (pp.
652-657).

Thom, B. (2003). Interactive improvisational music compan-
ionship: A user-modeling approach. User Modeling and User-
Adapted Interaction, 13(1-2), 133-177.

Thomas, N. G., Pasquier, P, Eigenfeldt, A., & Maxwell, J. B.
(2013). A methodology for the comparison of melodic gen-
eration models using meta-melo. In Proceedings of the 14th
international society for music information retrieval confer-
ence (pp. 561-566).

Thérisson, K., & Helgasson, H. (2012). Cognitive architectures
and autonomy: A comparative review. Journal of Artificial
General Intelligence, 3(2), 1-30.

Todd, P. M., & Werner, G. M. (1999). Frankensteinian meth-
ods for evolutionary music. In Musical networks: Parallel
distributed perception and performance (pp. 313-340). Cam-
bridge, MA: MIT Press/Bradford Books.

Turing, A. M. (1950). Computing machinery and intelligence.
Mind, 59(236), 433-460.

Ueda, L. K., & Kon, F. (2003). Andante: A mobile musical agents
infrastructure. In Proceedings of the 9th Brazilian symposium
on computer music (pp. 87-94).

Valle, R., Donzé, A., Fremont, D. J., Akkaya, I, Seshia, S. A,,
Freed, A., & Wessel, D. (2017). Specification mining for

50 K. TATAR AND P. PASQUIER

machine improvisation with formal specifications. Comput-
ers in Entertainment, 14(3), 1-20.

Varese, E., & Wen-chung, C. (1966). The liberation of sound.
Perspectives of New Music, 5(1), 11-19.

Vicari, R. M., Nakayama, L., Wulfhorst, R. D., Costalonga, L.
L., & Miletto, E. M. (2005). The musical interactions within
community agents. Agent-based simulation conference.

Vold, J. N. (1986). A study of musical problem solving behav-
ior in kindergarten children and a comparison with other
aspects of creative behavior (Ph.D. dissertation). University
of Alabama.

Wang, C. I, & Dubnov, S. (2014). Guided music synthesis
with variable Markov oracle. In The 3rd international work-
shop on musical metacreation, 10th artificial intelligence and
interactive digital entertainment conference.

Wang, C. I, & Dubnov, S. (2017). Context-aware hidden
Markov models of jazz music with variable Markov oracle.
In Proceedings of the 5th international workshop on musical
metacreation (MUME 2017).

Webster, P. R. (1987). Conceptual bases for creative thinking in
music. In Music and child development (pp. 158-174). New
York, NY: Springer. doi:10.1007/978-1-4613-8698-8_8

Wehn, K. (1998). Using ideas from natural selection to evolve
synthesized sounds. In Proceedings of the digital audio effects
DAFX98 workshop (pp. 159-167).

Weiss, G. (2013). Multiagent systems intelligent robotics and
autonomous agents (2nd ed.). Cambridge: The MIT
Press.

Whalley, 1. (2004). PIWeCS: Enhancing human/machine
agency in an interactive composition system. Organised
Sound, 9(2), 167-174.

Whitelaw, M. (2004). Metacreation: Art and artificial life. Cam-
bridge: MIT Press.

Wiggins, G. A. (2006a). A preliminary framework for descrip-
tion, analysis and comparison of creative systems. Knowledge-
Based Systems, 19(7), 449-458.

Wiggins, G. A. (2006b). Searching for computational creativity.
New Generation Computing, 24(3), 209-222.

Wooldridge, M. (2009). An introduction to multiagent systems.
Hoboken, NJ: John Wiley & Sons.

Wulfhorst, R. D., Nakayama, L., & Vicari, R. M. (2003). A
multiagent approach for musical interactive systems. In
Proceedings of the second international joint conference on
autonomous agents and multiagent systems, AAMAS 03 (pp.
584-591). New York, NY: ACM.

Yee-King, M., & d’'Inverno, M. (2016). Experience driven
design of creative systems. In Proceedings of the 7th compu-
tational creativity conference (ICCC 2016). Universite Pierre
et Marie Curie.

Yee-King, M. J. (2007). An automated music improviser using
a genetic algorithm driven synthesis engine. In M. Giacobini
(Ed.), Applications of evolutionary computing. Lecture Notes
in Computer Science, Vol. 4448. Berlin: Springer.

Young, M. (2007). NN music: Improvising with a ‘living’ com-
puter. In International symposium on computer music model-
ing and retrieval (pp. 337-350). Springer.

	1. Introduction
	2. Generative Art and Computational Creativity
	3. Typology of musical agents
	4. Cognitive musical agents
	4.1. Cognitive musical agents with knowledge representation
	4.2. Cognitive musical agents with BDI architecture
	4.3. Cognitive musical agents with cognitive models

	5. Reactive musical agents
	5.1. Reactive musical agents in real-world environments
	5.1.1. Rule-based reactive musical agents
	5.1.2. Reactive musical agents with evolutionary computation

	5.2. Reactive musical agents in virtual environments
	5.2.1. Multi-agent simulations with evolutionary computation
	5.2.2. Multi-agent simulations with ecosystemic approaches

	6. Hybrid musical agents
	6.1. Hybrid musical agents using statistical sequence modelling
	6.2. Hybrid musical agents combining statistical sequence modelling with rule-based models
	6.3. Hybrid musical agents with artificial neural networks
	6.4. Hybrid musical agents with cognitive models

	7. Evaluation of musical agents
	7.1. Informal evaluations
	7.2. Formal evaluations
	7.2.1. Software validations
	7.2.2. Synthetic evaluations
	7.2.3. Empirical evaluations

	7.3. Future steps of evaluation and benchmarking

	8. Ad infinitum
	8.1. Architectures and algorithms
	8.2. Interdisciplinarity of MuMe
	8.3. Design considerations
	8.4. MuMefication
	8.4.1. MuMe as a field
	8.4.2. A typology of MuMe systems

	8.5. Challenges and opportunities

	9. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

