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Musical metacreation (MuMe), also known as musical computational creativity, is a subfield of computational
creativity that focuses on endowing machines with the ability to achieve creative musical tasks, such as
composition, interpretation, improvisation, accompaniment, mixing, etc. It covers all dimensions of the
theory and practice of computational generative music systems, ranging from purely artistic approaches
to purely scientific ones, inclusive of discourses relevant to this topic from the humanities. MuMe systems
range from purely generative ones to a variety of interactive systems, such as those for computer-assisted
composition and computer-assisted sound design. In order to better appreciate the many dimensions of
this interdisciplinary domain and see how it overlaps and differs from research in computer music, this
introduction provides a general entry point. After defining and introducing the domain, its context, and
some of its terminology, we reflect on some challenges and opportunities for the field as a whole.
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1. INTRODUCTION

In 1960, Herbert Simon defined Artificial Intelligence (AI) as “the science of having
machines solve problems that do require intelligence when solved by humans” [Simon
1960]. Since then, AI has had some tremendous successes at rational problem solving.
A wide variety of algorithms have been designed and studied that allow us to explore
increasingly complex search spaces in order to attain optimal or near-optimal solutions
to abstract and concrete problems, such as flying planes; regulating nuclear plants;
designing electric circuits; automating negotiation; diagnosing diseases; and playing
chess, Go, or Jeopardy. While the list of tasks addressed at human-competitive levels
by AI systems is growing steadily, some are looking more carefully at an old question:
Can machines be creative?
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2. COMPUTATIONAL CREATIVITY

Computational creativity, or metacreation, is a fast-growing field that addresses that
question by exploring the automation of creative processes, with the aim to endow
machines with creative behaviors. As a field, it investigates:

—Creativity as It Is. It is striving to understand and simulate human creativity. What
is creativity? If we can understand this complex notion, can we simulate it? As such,
when such a cognitive modeling approach is chosen, it is also part of cognitive science.

—Creativity as It Could Be. The field is also devoted to exploring processes of which we
know humans alone to be incapable. The outcomes of those artificial processes might
nonetheless be considered novel and valuable, that is creative.

2.1. How Does Computational Creativity Differ from Traditional AI?

Computational creativity differs from the rest of rational problem solving AI, in that
it frequently addresses problems for which the notion of optimality of a solution is a
priori ill-defined. These problems include those for which there are no definitive yes
or no answers, no clearly defined win or lose states, no clearly defined goal states, no
well-defined Pareto dominance, no obvious and complete objective functions, no clear
utility functions, and ill-defined preference relations. In other words, it addresses a
class of problems for which the usual guides and the search for solution end-points are
not clearly defined.

We define computational creativity around the notion of creative tasks for which
there is no clear “best” outcomes or optimal solutions. We cannot define the optimal
choreography, composition, or musical interpretation. We can state our preferences for
the best drawing, painting, narrative, poetry, joke, recipe, or level for a video game;
however, there is no method to determine an objective answer to these ideals. A multi-
tude of tasks that do not fall a priori under the paradigm of rational problem solving
constitute this broad category, across a multitude of domains.

In a nutshell, computational creativity is the science of machines addressing creative
tasks. Humans perform these tasks every day; although they do not have clearly de-
fined solutions, they are nevertheless clearly defined areas of activity with well-known
associated behaviors.

2.2. Why Is Computational Creativity Important?

There are a number of reasons why research and progress in this area matters. First, it
is fundamental research on creativity and creative processes. As with intelligence, the
nature of creativity remains the topic of much debate, yet it is one of the essential traits
of humanity that scholars have been trying to understand and define for millennia.
Because creativity is a complex phenomenon, the computational implementation and
simulation of the various theories and models is an ideal method of inquiry. As with any
complex phenomenon, such as the weather, the nervous system, or capital markets, a
powerful way to deploy, test, and eventually validate models of these systems is through
computational simulation.

Second, our use of computers is no longer limited to rational problem solving1; in-
stead, they have become ubiquitous within personal communication, entertainment,
art, and culture. With the computerization of society in the developed world, more
and more people are surrounded by an increasing number of processors that are used

1“A system is rational if it does the right thing”, which assumes well-defined problems to which there
are correct, and optimal or near optimal solutions [Russell and Norvig 2009]. Rational problems are very
important and cover a wide range of tasks, from playing Go, and designing electronic circuits, to general
calculation, such as basic algebra.
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for creative tasks: composing messages, editing photographs and movies, designing
graphics, computer entertainment, as well as within the more traditional fine arts.
This increasing volume of creative tasks calls for more attention to be devoted to cre-
ative processes, and their eventual automation.

Third, there is a need for generative systems in the creative industries. The move
from linear to nonlinear media entailed an explosion in the number of assets re-
quired. Within a feature animation movie, for example, every second of the film will be
painstakingly edited by a creative team. However, unlike a film, the elements within
online multiplayer computer games are not fixed; new elements, from the smallest of
objects to entire worlds, replete with sound and music unique to the situation, are re-
quired to fulfill the demands of millions of players, each playing hours per week. This
is a problem currently faced by the video game industry, but is one that increasingly
will appear in any nonlinear creative application.

Finally, current creative software is fundamentally inert. AI and machine learning
methodologies have seldom made their way into the creative software industry. Soft-
ware is often creatively brittle and doesn’t afford flexible interactive creative search.
The software will require the user to click the same buttons, select the same menu
items, and repeat the same mundane tasks sequentially in order to complete similar
processes, processes that have often been done in similar tasks in the past, all of which
interfere with artistic flow. Providing creative suggestions through autonomous and
learned behaviors, and more generally bringing greater automation and artificial in-
telligence to creative software, is an important goal of applied computational creativity.

2.3. Defining Creativity

Despite the best efforts of philosophers, psychologists, cognitive scientists, and edu-
cators, there is no clearly accepted definition of creativity [Peter 2009]. A fairly mod-
est and uncontroversial approach was formulated by creativity philosopher Margaret
Boden [2004]. She defines creativity as the ability to come up with ideas or artifacts
that are original, and valuable: original in that they are new and valuable in any sense
one can reify this notion, monetary or otherwise.

Boden goes on to delineate two kind of creativity:

—P-creativity. Psychological creativity (novel and valuable for the individual), a.k.a
mundane or everyday creativity;

—H-creativity. Historical creativity (novel and valuable for the group, i.e., humanity),
a.k.a eminent creativity.

Perhaps more relevant for our purpose, she also defines three types of creativity:

—Exploratory Creativity. In which one is producing novel and valuable instances in an
existing creative space. Given all the pieces of heavy metal music, for example, can
one find one that is unique (i.e., novel) and considered interesting (i.e., valuable), yet
clearly remaining within that defined space?

—Combinatorial Creativity. This type of creativity involves bringing creative spaces
together in a new ways. A cellphone that is also a camera is a simple example of com-
binatorial creativity that was novel a decade ago, and still remains valuable today.
Conceptual blending and metaphors are also examples of combinatorial creativity.

—Transformational Creativity. This occurs when the creative space itself is modified:
for example, the creation of a new style of art, music, fashion, heretofore never
imagined.

The first two notions can, and have been, automated through computational means,
and many fine examples exist. The third is less well understood, and is complicated
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and somewhat rare; the conditions for this to occur, and to be recognized, are beyond
the current conceptions of computational creativity.

An alternative distinction [Bown 2012] is between generative and adaptive creativ-
ity. Generative creativity actually extends well beyond the scope of human action, and
includes any process whereby new things come into being. For example, natural evolu-
tion is a profoundly creative force, but its nature is generative; there is no beneficiary
to its unfolding. Adaptive creativity is the more common sense of creativity as an in-
tentional cognitive act: adaptive in the sense that it improves the actor’s situation. The
distinction is important because there are many human processes, usually occurring
on the social level, where there is no apparent overall value to the creative product,
such as in entire movements in art or music. We would call these generative. Thus,
creative outcomes can be considered the combination of both generative and adaptive
creative processes.

3. DEFINING MUSICAL METACREATION

With these basic notions in place, we can define musical2 metacreation as a subfield of
computational creativity that addresses music-related creative tasks. While computer
music and related fields address a variety of problems related to music – including mu-
sic perception, music recognition, music classification, music representation, and music
cognition – MuMe has its own set of specific dimensions, presented in the following
subsections.

3.1. Domain of the System and Problem Addressed

Due to its structured nature [Damschroder and Williams 1990], music has as rich
history of generative approaches devoted to its creation [Hedges 1978; Sloboda 1988;
Englert 1989; Dorin 2001; Nierhaus 2009; Edwards 2011]. Musical metacreation is
the natural evolution of these procedures, and a wide variety of research has been
undertaken to investigate automated musical creation tasks often already achieved
through the use of computer software. As such, the first characteristic of a MuMe
system is the problem it addresses; in other words, what does it generate?

While the diversity of problems addressed by MuMe systems is too long to be exhaus-
tive here, groups or families of systems can be organised around recurrent “canonical”
problems:

—Composition. The system must produce novel music compositions, either through al-
gorithmic means, or using knowledge derived from a corpus of existing compositions.
The output can be any symbolic representation, such as a score in MIDI format or
other notation, of a pattern, part, piece, or group of musical pieces;

—Interpretation. Given a composition (in any format), the interpretation consists in
producing an audio rendering of the composition. A typical example is a musician or
an orchestra performing from a score;

—Improvisation. The creation and real-time performance of new musical material
spontaneously, to varying degrees, and often enacted in groups. While it can be
prepared and rehearsed, it is assumed that improvisation occurs in real-time.

—Accompaniment. One or several musical parts (e.g., melody, harmonic progression,
rhythmic accompaniment) is provided, and other parts need to be either composed
or interpreted (or both).

In addition to such classic musical tasks, specific tasks and problems have been devised
by the MuMe community. An example of such a task or sub-problem is style imitation

2Here, and in the following, music is meant in an inclusive sense of organized sound, as well as peripheral
domains such as sound design, sound synthesis, and any creative task involving sound-related concepts.
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[Dubnov et al. 2003], which can be broadly defined as such: Given a corpus C = {C1,
. . . Cn} representative of style S, generate new instances that would be classified as
belonging to S by an unbiased observer (typically a set of human subjects).

Another example is continuation that has been brought forward through the work on
style imitation of Pachet [2003], and consists in having a musician play or improvise,
and the system taking over once the musician stops.

The basic problems and tasks introduced above can be refined and broken down into
a multitude of sub-problems and sub-domains. Each MuMe system has its own domain
and task. For example, systems may limit themselves to addressing the generation of:

—Harmonic progressions [Eigenfeldt and Pasquier 2010; Whorley et al. 2010; Groves
2013; Manaris et al. 2013; Pachet and Roy 2014];

—Rhythm generation [Eigenfeldt 2008; Chordia and Rae 2010];
—Melodic generation [Bosley et al. 2010; Sarwate and Fiebrink 2013];
—Orchestration [Handelman et al. 2012];
—Harmonization [Pachet and Roy 2001; Simon et al. 2008; Pachet and Roy 2014];
—Affective interpretation [Kirke and Miranda 2009];
—Affective composition [Birchfield 2003; Wallis et al. 2011; Eigenfeldt et al. 2015];
—Automatic mixing [Reiss and Perez Gonzalez 2008; Reiss 2011];
—Soundscape composition [Eigenfeldt and Pasquier 2011; Thorogood et al. 2012].

In doing so, some generate simple patterns, phrases, or sequences, while other systems
may incorporate all aspects in their generation of full pieces, thereby accounting for
the multilevel nature of musical constructs.

Some systems not only address a musical task, but might be “multidisciplinary” or
multimedia in nature, such as generating music for film [e.g., Sorenson and Brown
2008], installation [e.g., Schedel and Rootberg 2009; Eigenfeldt et al. 2014], or games
[Collins 2008; Brown 2012].

One of the pervasive issues with MuMe systems is the question of specifying the
creative interaction between the musician or user and the system. The research on
metacreative musical interfaces draws upon the research on musical interfaces at
large within the NIME (New Interfaces for Musical Expression) community. Questions
of a system’s autonomy – specifically in relation to interaction – will be discussed below.

3.2. Levels of Autonomy of the System

MuMe software can be classified on a continuum that ranges between two extremes:
from systems with no autonomy to completely autonomous systems. At one end of the
spectrum, we find systems that have no or very little automation, or autonomy, e.g.,
the typical digital audio workstation (DAW), which historically has been the equivalent
of a musical typewriter: a general purpose music system in which every single action
requires human intervention. We do note that some contemporary DAWs include fea-
tures that could be regarded as creativity enhancers, and automate some tasks for the
user, including automatic rhythm alignment or audio transcription.

At the other extreme, there are completely generative systems. The user launches –
and potentially configures – the system, and the musical task to which it is dedicated
unfolds – e.g., EMI [Cope 1996]. Note that purely generative systems can be interac-
tive – e.g., Voyager [Lewis 2000]. Eventually, all graduations of this continuum, can
be envisioned through a range of computer-assisted creativity tools, such as those
devoted to computer assisted composition tools [e.g., Truax 1985; Cope 1997; Assayag
et al. 1999; Maxwell et al. 2012].

The autonomy [Bradshaw et al. 2013] of a system is defined by both its level of self-
sufficiency and its level of self-directedness, and the balance between these dimensions
is one of the main reasons for the diversity of MuMe systems. A full taxonomy of MuMe
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systems according to these has yet to be decided upon, although one has been proposed
[Eigenfeldt et al. 2013]. This issue is also debated in the computational creativity
community, where some distinguish merely generative systems, generative systems
with feedback, and generative and reflective systems [Agres et al. 2016]. More generally,
and to illustrate the complexity of the subject, such typologies are still debated in
the AI community, with various types of agents ranging from reactive to cognitive
being defined by the various dimensions of autonomy and intelligence being considered
[Wooldridge 2009].

3.3. Origin of the System’s ‘Knowledge’

Early algorithmic composition systems [e.g., Koenig 1983] relied upon the user to as-
sign values, dynamic or otherwise, to various parameters prior to generation, thereby
relying upon the user’s musical knowledge and/or aesthetic judgment. Later systems
[Cope 1996] have extracted such knowledge from a provided corpus of musical works
or excerpts. We therefore make a distinction between non-corpus-based systems that
generate their output without being exposed to musical information as an input, and
corpus-based systems that have been exposed to music, either through symbolic nota-
tion (most often MIDI data) or from audio data.

3.4. The Nature of the Inputs/Outputs of the System

These are also varying in type:

—Symbolic. Most MuMe systems have input and/or output that are of a discrete sym-
bolic nature, such as musical notation, MIDI files, or MIDI. Examples include Cope’s
EMI (MIDI file input, and MIDI file output), Lewis’ Voyager (MIDI input and output)
and Kinetic Engine (no input, MIDI output) [Eigenfeldt 2008];

—Audio. Some systems use audio signals as input and/or generate audio directly.
Examples include Young’s piano_prosthesis and oboe_prosthesis [2008] or the Audio
Metaphor soundscape generation systems [Thorogood et al. 2012];

—Hybrid. Some systems accept both types of inputs and outputs. Examples include
Sony’s Continuator [Pachet 2003], and UCSD/IRCAM’s Audio Oracle [Dubnov et al.
2003].

It is worth noticing that these inputs/outputs can be specific non-directly musical
representations. For examples, systems have been conceived that generate presets for
a musical instrument [Macret and Pasquier 2013], generate sound making programs
[Garcia 2001; Macret and Pasquier 2014], or synthesizer architectures [Yee-King 2011].

3.5. The System’s Relationship to Time

MuMe systems can be differentiated in how they operate in time:

—Online. The music is generated live in performance, in real time. Such systems may
react to live input or be interactive in some way, or may be purely generative.

—Offline. While the generation itself can occur slower or faster than real time, the
actual generation does not occur in real time.

A class of systems that typically take both inputs and outputs and are online are
musical agents. The domain of musical agents has been very dynamic and the explo-
ration of a vast variety of mono- and multi-agent architectures are being explored (e.g.,
Wulfhorst et al. 2001; Dahlstedt and McBurney 2006; Murray-Rust et al. 2006; Beyls
2007; Eigenfeldt 2008; Collins 2008a; Whalley 2009; Eigenfeldt and Pasquier 2011;
Martin et al. 2011).
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3.6. Generality of the System

Another dimension to consider regarding the nature of MuMe systems is the continuum
between systems that are specific and systems that are generic. Many MuMe systems
are created by musician/composers, with artistic intentions in mind; as such, they will
tend to reflect at some level, purposefully or otherwise, the aesthetic of the designer.
Such systems will tend to produce – ideally musically successful – variations of the
same composition rather than creating completely novel outputs with each run. The
sacrifice in generality may be appropriate for this context, in that the specificity that
can favor successful music is increased [Truax 1980].

On the other end of this spectrum, some systems are generic. For example, corpus-
based style-imitation systems [e.g. Conklin 2003] attempt to derive all musical knowl-
edge from the corpus provided; and as such, they have the potential to be aesthetically
agnostic. Along this continuum, a variety of levels of generality are possible, with
system using heuristics or encoding certain musical knowledge with various levels of
specificity.

This continuum of generality is also reflected by the MuMe community, which spans
purely artistic work to purely scientific, going through all the possible hybrids and
combinations in between.

3.7. The System’s Inner Working

A consequence of the diversity of approach described above, is that the inner workings
of the system varies from messy vernacular code full of heuristic and ad hoc approaches
and algorithms, to the application of reproducible well-described and documented
algorithms.

An entire book is necessary to simply list the main algorithmic approaches to musical
composition [Nierhaus 2009]. In general, any process or algorithms that can be used
in generative ways that one can think of has been tried for a musical task, be there
from AI, machine learning, artificial life, pattern recognition, optimisation, or regular
computer science and algorithmics. The whole gamut from simple randomness and
basic probability theory to the most sophisticated deep learning algorithms or cognitive
agent architecture has or is being explored by the hundreds of MuMe researchers,
practitioners and enthusiasts around the world.

4. EVALUATION OF MUME SYSTEMS

Since MuMe systems explore musically creative tasks; they can, in principle, be eval-
uated in ways similar to their human-acheived counterparts. Therefore, evaluation of
MuMe outputs can be done by/through:

(1) Authors. The artists, designers, computer scientists, and more generally creators of
a MuMe system are usually the first to judge the success of their system’s output;

(2) Users, Peers, and Experts. Other composers, musicians, sound designers, and re-
searchers using the system and providing critical feedback;

(3) Audience. Many creative tasks are designed to produce artifacts that will be pre-
sented to a larger audience. It is possible to measure the popularity of a given
system’s output in very direct ways: is an audience willing to pay to experience the
artifact, either through concert tickets sales or album purchases/downloads?

(4) Press and Media Coverage. The interest shown by critics, journalists, concert re-
views, and album reviews;

(5) Peer Reviewers, Curators and Jurors. How the system is evaluated through peer-
reviewed academic papers, inclusion in peer-reviewed concerts/festivals, the award-
ing of academic grants;
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(6) Theoretical and Analytic Measures. Peer-review of academic papers describing the
system’s processes;

(7) Empirical Studies. Specific qualitative or quantitative user/audience studies on the
system’s output.

Musical metacreation can be seen as a scientific inquiry, an artistic inquiry, or both.
The various types of evaluation listed above do cover both spectra, and the appropriate
one must be chosen accordingly based upon the intentions of the authors. Different
methods apply in each case, but both demand the same degree of rigour and clarity
about the work’s objectives and outcomes. In some of these cases, such as (4), great
care must be taken to ensure that a critical analysis of the evaluation was conducted;
did it only impress critics because of the exciting idea behind the project, or because of
the quality of the system’s original output?

Evaluations of artworks are difficult, and involve the complex and subjective notion
of aesthetics [Dickie 1985]. However, we can attempt to address the following aspects
of a MuMe system:

—Quality. Does the system achieve the task it sets out to achieve? Is it any good at it?
Is the system human-competitive at the task?

—Creativity. Is the system demonstrating creativity? What type? How does the system
fare against humans?

—Believability. For some research projects, the process implemented is meant to behave
in ways that are anthropomorphic (or as a simulation of some computational model
of a natural agent). How successful at such imitation is the system?

—Complexity. The algorithmic properties of the system are often of interest. What class
of complexity is the creative task defined within? Does the system produce a richness
of behavior?

—Robustness. Can the system operate in a robust fashion on all input, or is it meant
to react to a small set of input data?

—Reliability. Can the system guarantee a reliable quality of output independently of
the input? Has the output of the system been “cherry-picked”?

4.1. Theoretical Aspects of Evaluation

There are a variety of theoretical reasons as to why evaluation is difficult. By the very
nature of an artistically creative task, we are looking at problems for which there is
no notion of optimality. A direct consequence of this is that most measures used to
evaluate the quality of the production of a system in computer science and AI do not
readily apply. A priori, a melody generation system cannot be assessed through typical
methods found in rational problem solving, which measure error and distance to an
optimal solution, because there isn’t such a thing as “an optimal melody”.

Second, when we resort to human subjects in order to evaluate a given system for a
given task, subjective and cultural impressions and judgments are involved. Further-
more, the presentation of musical artifacts is multidimensional, and framing can play
a role [Charnley et al. 2012]. People’s judgments are influenced by who produced the
work, and how was it produced. For example Salganik et al. [2006] provided exper-
imental evidence of winner-takes-all effects in musical evaluation. They compared a
blind evaluation task with one in which people could see the overall scores of the pieces
of music, as rated by others, the latter having more extreme winners and losers. One
study in computational creativity has suggested that judges may be biased against
musical metacreation [Moffat and Kelly 2006].

In reality, though, it may be naive and ineffective to treat evaluation as a simple
measurement, like taking a temperature. A person experiencing a piece of art or music
does not perform a single judgement, but builds a complex and multifaceted perception
of it, that may be manifest in different ways over time and in context. There are
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serious questions about whether reducing this interaction to a numeric rating is at
all meaningful and the debate around the appropriateness of the various research
instruments is very much alive [Yannakakis and Martinez 2015].

4.2. Practical Aspects of Evaluation

Finally, there is a plethora of practical reasons why the evaluation of MuMe systems
is a challenging topic. Consider the following list of practical matters that are intrinsic
to generative systems or affect the performance of the system in very complex ways. In
doing so they add to the difficulty in evaluation:

—Choice of the corpus: for corpus-based systems, the choice of music from which to
learn will influence the system’s output. This is the “inspiring set”, as defined by
Ritchie [2007]. How big should it be? How diverse, or compact, should it be? If it does
well on one set, and less so on another, does this mean the results were “programmed
in” – a concern within computational creativity – or that, like humans, it may just
be better at doing certain things than others?

—Choice of the parameters: most MuMe systems are heavily parameterized, with
different choices of parameters leading to different behaviors that can significantly
affect the performance of the system across various dimensions. While this is a
problem common to most complex computer systems – in particular the ones using
machine learning – the problem is worsened by the non-objective nature of the tasks
at hand.

—The system needs to be evaluated on a sample output: generative systems can create
ad infinitum, so does this mean that any or all output is valid for testing? Or can the
designer select from these outputs?3 Ritchie [2007] discusses this, and the above two
issues, as problems in evaluating typicality, novelty, and quality of creative artefacts.

—The various uses of the system need to be taken into account: MuMe systems do not
exist in a vacuum, and a system might perform well for a particular use and not
for others. For example, an online rhythm generation system might be a useful tool
as an inspiration machine in the context of a composition program, but a terrible
musical agent in the context of live improvisation.

—The isolation of the task: most musical tasks interact with their context. For exam-
ple, composition and interpretation are contingent upon one another. A well-crafted
composition, human- or computer-generated, is likely to be perceived unfavourably
by listeners if performed without expressivity. As most MuMe systems also involve
performance, can a listener separate the composition from the performance?

Due to these difficulties, evaluation methodologies for MuMe systems remain an open
research area. Evaluation strategies need to be tailored to specific research goals in
ways that are relevant and have integrity, and may range from highly positivist strate-
gies to approaches such as ethnography, design research methods or informal discus-
sion and reflection. The research community must explore existing and novel research
instruments that can support qualitative and quantitative comparative studies.

5. ADDITIONAL POINTS OF DISCUSSION

5.1. Generation vs Creation: The Question of the Authorship

A clear goal for practitioners within MuMe is the generation of musical material that
would be considered equally creative as output produced by humans. The notion of
systems – computational or otherwise – generating artistic material has been ongoing
for centuries: as Galanter [2003] suggests, systematic art generation is as old as art

3While this may be considered “cherry-picking” of results, and thus negatively viewed from a scientific
standpoint, it would be difficult to find a human artist that publically presents every instance of work
created without any form of selection.
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itself. Although generative art does not require the use of a computer, the prevalence of
digital tools in the last fifty years has allowed for a dramatic increase in art and music
using generative techniques. With the concurrent increase in power of computational
systems, coupled with the application of machine learning and AI more generally,
generative music has reached the point where complete works can be generated by
machine.

At what point does the output of the system become the machine’s, and not the
designer’s? In asking this, we must remain aware of the collaborative, social, networked
factors involved in any act of creativity, and reject the automatic presumption that
attributions of creativity must lie with any one easily defined agent [Saunders and
Bown 2015].

One benefit of generative systems for artists is the ability to explore the variety of
output from a designed process; the artistic act can be found in the design of the system,
as well as the selection from its output. This is a commonly encountered example of
the complex overlap that confounds attributions of creativity. But whilst we may not
be able to accurately pinpoint the creative capacity of the system, there is absolutely
nothing stopping us forming a rich description of the system in a working context,
as both designers and ethnographers are experienced at doing. There is a lot of work
to be done in the analysis of the system’s output [Collins 2008b] as much as in the
observation and evaluation of the process.

5.2. Community and Scope

While MuMe has tended to focus on systems and the music they produce, the field
covers the wide spectrum of practices around generative music from purely artistic to
purely scientific, including the humanities.

Given that MuMe systems involve knowledge about both computers and music, the
field is inherently multidisciplinary, and projects are often interdisciplinary [National
Academies 2004]. While the arts-science dichotomy is sometimes an issue for the com-
putational creativity community, there are many ways in which these aspects can be
better integrated rather than set in opposition to each other, without compromising
the rigour of either approach. Continued development in this interdisciplinary field
requires expertise from various domains, including both arts and sciences, in order to
develop successful systems. As suggested above, design, characterized by designerly
ways of knowing [Cross 2006], can act as a successful mediator between these areas
of expertise. After all, this is one of the key domains influencing how the work is
experienced by people.

Finally, MuMe is not only concerned with the design, development and evaluation
of generative musical systems, but also with any discourse about – and study of –
these systems, be it musicological, philosophical, psychological, neurological, sociolog-
ical, anthropological, economical, mathematical, communicational, ecological, biologi-
cal or medical. The diversity of community and broad scope are inherent interests and
strengths of the domain.

5.3. Roadmap and Opportunities

At the time of writing, we identify a number of key developments that would help
consolidating a collaborative research community:

—Benchmark Tasks. The Music Information Retrieval community4 has created a com-
petition – MIREX5 – to test and compare algorithms for a variety of tasks. The MuMe
community should add tasks to this collection.

4http://www.ismir.net/.
5http://www.music-ir.org/mirex/wiki/MIREX_HOME.
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—Shared Datasets. Similar to how the MIR community has common datasets, the
MuMe community should build and share common corpora and representations.
Such shared datasets would enable progress on benchmarking tasks.

—Deployment and Accessibility. The MuMe community is a diverse collection of com-
posers, sound designers, and scientists; as a result of this diversity, MuMe systems
have tended to be idiosyncratic, non-idiomatic, and ad hoc [Merz 2014]. Sharing and
replication of results has been difficult, and efforts should be made to share existing
systems and collate libraries compiling the best algorithms in the field.

—Standardization and interoperability. A consequence of the above is that the various
systems developed are typically not interoperable. Standardization of MuMe inter-
faces are desirable; some efforts at collaborative MuMe systems are underway [Bown
et al. 2015].

—Real-World Applications. There is a plethora of opportunities to place current systems
within the real world, commercial applications. Despite the obvious potential, only
few applications of MuMe are reaching the video game industry, or electronic dance
music production. A clearer and more visible presentation of MuMe would help
engage the industry further.

—Community Structure and International Organization. We count MuMe practitioners
by the hundreds, likely thousands, spanning the artistic, academic, and industrial
worlds. While some umbrella forums do exist, the formation of an international
organization providing structure and visibility to the field would be beneficial.

Meanwhile, the field is growing and is well placed to benefit from and contribute to
a large number of current technological development that are the trends of our time.
These include: big data [Mayer-Schönberger and Cukier 2013], since artists want to
extract knowledge from cultural repositories; deep learning [Arel et al. 2010] because
we need to extract meaningful features and structures that cannot be easily formu-
lated from art manuals; online collaboration [Garrison 2006] in order to better share
creative resources efficiently; better coding and creative computing environments –
including commercial products such as Max for Live – and ecosystems of practice;
human-computer interaction (HCI) applied to MuMe; and new application areas, such
as interactive music installations, Live Algorithms in Music [Blackwell 2009], auto-
mated remixing [Vihavainen et al. 2011], film composition tools [Sorensen and Brown
2008], music education tools [Nilsson 2003], and copyright free generation [Nierhaus
2009], to name a few.

6. CONCLUSION

With hundreds if not thousands of academic publications and equally numerous real-
world applications, MuMe is a thriving field of research that speaks to the trends and
challenges of our time. The myriad of approaches mirrors the variety of researchers,
both artistic and scientific. Its simplest definition – automation of aspects of the musi-
cally creative process – can be as simple as randomisation of selected parameters, to
the pursuit of a creative system that exhibits volition.

Without any claim of exhaustivity, this short introduction aims to provide basic
definitions and salient distinctions that structure MuMe, a field that spans the diverse
dimensions of the computer simulation of creative musical tasks.

REFERENCES

K. Agres, J. Forth, and G. Wiggins. 2016. Evaluation of musical creativity and musical metacreation systems.
ACM Computers Comput. In Entertainment, Special Issue: Musical Metacreation. 14, 2.

I. Arel, D. Rose, and T. Karnowski. 2010. Deep machine learning-a new frontier in artificial intelligence
research. IEEE Computational Intelligence Magazine 5, 4, 13–18.

Computers in Entertainment, Vol. 14, No. 2, Article 2, Publication date: December 2016.



2:12 P. Pasquier et al.

G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue. 1999. Computer-assisted composition at IRCAM:
From patchwork to openmusic. Computer Music Journal 23, 3, 59–72.

P. Beyls. 2007. Interaction and self-organisation in a society of musical agents. In Proceedings of ECAL 2007
Workshop on Music and Artificial Life (MusicAL 2007).

D. Birchfield. 2003. Generative model for the creation of musical emotion, meaning, and form. In Proceedings
of the 2003 ACM SIGMM Workshop on Experiential Telepresence. 99–104.

T. Blackwell. 2009. Live algorithms. Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik.

M. A. Boden. 2004. The Creative Mind: Myths and Mechanisms. Psychology Press.
S. Bosley, P. Swire, and R. Keller. 2010. Learning to create jazz melodies using deep belief nets. In Proceedings

of the 1st International Conference on Computational Creativity. Lisbon.
O. Bown. 2012. Generative and adaptive creativity: A unified approach to creativity in nature, humans and

machines. Computers and Creativity, Springer, Berlin, 361–381.
O. Bown, B. Carey, and A. Eigenfeldt. 2015. Manifesto for a musebot ensemble: A platform for live inter-

active performance between multiple autonomous musical agents. In Proceedings of the International
Symposium of Electronic Art.

J. Bradshaw, R. Hoffman, D. Woods, and M. Johnson. 2013. The seven deadly myths of “autonomous systems”.
IEEE Intelligent Systems 3, 54–61.

D. Brown. 2012. Mezzo: An adaptive, real-time composition program for game soundtracks. In Proceedings
of the AIIDE 2012 Workshop on Musical Metacreation. 68–72.

J. Charnley, A. Pease, and S. Colton. 2012. On the notion of framing in computational creativity. In Proceed-
ings of the 3rd International Conference on Computational Creativity. 77–82.

P. Chordia and A. Rae. 2010. Tabla gyan: An artificial tabla Improviser. In Proceedings. of the 1st International
Conference on Computational Creativity. Lisbon.

K. Collins. 2008. Game Sound: An Introduction to the History, Theory and Practice of Video Game Music and
Sound Design. MIT Press.

N. Collins. 2008a. Reinforcement learning for live musical agents. In Proceedings of the International Com-
puter Music Conference. Belfast.

N. Collins. 2008b. The Analysis of Generative Music Programs. Organised Sound, 13.
D. Conklin. 2003. Music generation from statistical models. In Proceedings of the AISB 2003 Symposium on

Artificial Intelligence and Creativity in the Arts and Sciences (Aberystwyth, Wales), 30–35.
D. Cope. 1996. Experiments in Musical Intelligence. Vol. 12. Madison, WI: AR editions.
D. Cope. 1997. The composer underscoring environment: Cue. Computer Music Journal 21, 3, 20–37.
N. Cross. 2006. Designerly Ways of Knowing. Springer London, 1–13.
P. Dahlstedt and P. McBurney. 2006. Musical agents: Toward computer-aided music composition using

autonomous software agents. Leonardo 39, 5, 469–470.
D. Damschroder and D. Williams. 1990. Music Theory from Zarlino to Schenker: A Bibliography and Guide

(No. 4). Pendragon Press.
G. Dickie. 1985. Evaluating art. The British Journal of Aesthetics 25, 1, 3–16.
A. Dorin. 2001. Generative processes and the electronic arts. Organised Sound 6, 1, 47–53.
S. Dubnov, G. Assayag, O. Lartillot, and G. Bejerano. 2003. Using machine-learning methods for musical

style modeling. Computer 36, 10, 73–80.
M. Edwards. 2011. Algorithmic composition: computational thinking in music. Communications of the ACM

54, 7, 58–67.
A. Eigenfeldt. 2008. Emergent rhythms through multi-agency in max/msp. Computer Music Modeling and

Retrieval - Sense of Sounds. Springer Berlin, 368–379.
A. Eigenfeldt, J. Bizzocchi, M. Thorogood, and J. Bizzocchi. 2015. Applying valence and arousal values to a

unified video, music, and sound generative multimedia work. In Generative Art Conference, Venice.
A. Eigenfeldt, O. Bown, P. Pasquier, and A. Martin. 2013. Towards a taxonomy of musical metacreation:

Reflections on the first musical metacreation weekend. In Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment (AIIDE’13) Conference (Boston, MA).

A. Eigenfeldt and P. Pasquier. 2010. Realtime generation of harmonic progressions using controlled Markov
selection. In Proceedings of ICCC-X-Computational Creativity Conference (Lisbon, Portugal). 16–25.

A. Eigenfeldt and P. Pasquier. 2011. Negotiated content: Generative soundscape composition by autonomous
musical agents in coming together: Freesound. In Proceedings of the 2nd International Conference on
Computational Creativity (Mexico City), 27–32.

Computers in Entertainment, Vol. 14, No. 2, Article 2, Publication date: December 2016.



An Introduction to Musical Metacreation 2:13

A. Eigenfeldt, M. Thorogood, J. Bizzocchi, and P. Pasquier. 2014. MediaScape: Towards a video, music, and
sound metacreation. CITAR Journal 6, 1.

G. Englert. 1989. Automated composition and composer automation. The Music Machine, C. Roads (Ed.).
MIT Press, Cambridge, MA, 131–142.

P. Galanter. 2003. What is generative art? Complexity theory as a context for art theory. In Proceedings of
the 6th Generative Art Conference. Milan.

R. A. Garcia. 2001. Automatic Generation of Sound Synthesis Techniques. Ph.D dissertation. MIT.
D. Garrison. 2006. Online collaboration principles. Journal of Asynchronous Learning Networks 10, 1, 25–34.
R. Groves. 2013. Automatic harmonization using a hidden semi-Markov model. In Proceedings of the Artificial

Intelligence and Interactive Digital Entertainment Conference (Boston, MA).
E. Handelman, A. Sigler, and D. Donna. 2012. Automatic orchestration for automatic composition. In Pro-

ceedings of the AIIDE 2012 Workshop on Musical Metacreation. 43–48.
S. Hedges. 1978. Dice music in the eighteenth century. Music & Letters, 180–187.
A. Kirke and E. Miranda. 2009. A survey of computer systems for expressive music performance. ACM

Computing Surveys (CSUR), 42, 1, 3.
G. Koenig. 1983. Aesthetic integration of computer-composed scores. Computer Music Journal 7, 4, 27–32.
G. Lewis. 2000. Too many notes: Computers, complexity and culture in voyager. Leonardo Music Journal 10,

33–39.
M. Macret and P. Pasquier. 2013. Automatic tuning of the OP-1 synthesizer using a multi-objective genetic

algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC-2013) (Stockholm,
Sweden). Logos Verlag, Berlin, 614–621.

M. Macret and P. Pasquier. 2014. Automatic design of sound synthesizers as pure data patches using coevo-
lutionary mixed-typed Cartesian genetic programming. In Proceedings of the Conference in Genetic and
Evolutionary Computation (GECCO-2014). Vancouver, Canada, 309–316, ACM Press, 2014.

B. Manaris, D. Johnson, and Y. Vassilandonakis. 2013. Harmonic navigator: A gesture-driven, corpus-based
approach to music analysis, composition, and performance. In Procedings of the 9th AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (Boston, MA), 67–74.

A. Martin, C. Jin, and O. Bown. 2011. A toolkit for designing interactive musical agents. In Proceedings of
the 23rd Australian Computer-Human Interaction Conference. 194–197.

J. B. Maxwell, A. Eigenfeldt, and P. Pasquier. 2012. MANUSCORE: Music notation-based computer-assisted
composition. In Proceedings of the International Computer Music Conference. 357–364.

V. Mayer-Schönberger and K. Cukier. 2013. Big Data: A Revolution that Will Transform How We Live, Work,
and Think. Houghton Mifflin Harcourt.

E. Merz. 2014. Implications of ad hoc artificial intelligence in music. In Proceedings of the Artificial Intelli-
gence and Interactive Digital Entertainment Conference (Raleigh, NC).

D. Moffat and M. Kelly. 2006. An investigation into people’s bias against computational creativity in music
composition. Assessment 13, 11.

D. Murray-Rust, A. Smaill, and M. Edwards. 2006. MAMA: An architecture for interactive musical agents.
Frontiers in Artificial Intelligence and Applications 141, 36.

National Academies. 2004. Facilitating interdisciplinary research. The National Academies Press,
Washington DC.

G. Nierhaus. 2009. Algorithmic Composition: Paradigms of Automated Music Generation. Springer Science
& Business Media.

B. Nilsson. 2003. “I can always make another one!”–Young musicians creating music with digital tools.
Musicianship in the 21st Century: Issues, Trends and Possibilities. Sydney, Australian Music Centre.

F. Pachet. 2003. The continuator: Musical interaction with style. Journal of New Music Research 32, 3,
333–341.

F. Pachet and P. Roy. 2001. Musical harmonization with constraints: A survey. Constraints 6, 1, 7–19.
F. Pachet and P. Roy. 2014. Non-conformant harmonization: The real book in the style of take 6. In Proceedings

of the International Conference on Computational Creativity (Ljubljana).
M. Peter. 2009. Milieus of creativity: The role of places, environments, and spatial contexts. In Milieus of

Creativity. Springer Netherlands, 97–153.
J. Reiss. 2011. Intelligent systems for mixing multichannel audio. In Proceedings of the 17th International

Conference on Digital Signal Processing (DSP). 1–6.
J. Reiss and E. Perez Gonzalez. 2008. An automatic maximum gain normalization technique with applications

to audio mixing. In Proceedings of the Audio Engineering Society Convention 124. Audio Engineering
Society.

Computers in Entertainment, Vol. 14, No. 2, Article 2, Publication date: December 2016.



2:14 P. Pasquier et al.

G. Ritchie. 2007. Some empirical criteria for attributing creativity to a computer program. Minds and
Machines 17, 1, 67–99.

S. Russell and P. Norvig. 2009. Artificial Intelligence: A Modern Approach, third edition, Prentice-Hall.
M. Salganik, P. Dodds, and D. Watts. 2006. Experimental study of inequality and unpredictability in an

artificial cultural market. Science 311, 854–856.
A. Sarwate and R. Fiebrink. 2013. Expansion on description-based design of melodies. In Proceedings of the

9th Artificial Intelligence and Interactive Digital Entertainment Conference. Boston.
R. Saunders and O. Bown O. 2015. Computational social creativity. Artificial Life 21, 3, 366–378.
M. Schedel and A. Rootberg. 2009. Generative techniques in hypermedia performance. Contemporary Music

Review 28, 1, 57–73
H. Simon. 1960. The New Science of Decision Making. Harper and Row, New York.
I. Simon, D. Morris, and S. Basu. 2008. MySong: Automatic accompaniment generation for vocal melodies.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 725–734.
J. Sloboda. 1988. Generative Processes in Music: The Psychology of Performance, Improvisation, and Compo-

sition. Clarendon Press.
A. Sorensen and A. Brown. 2008. A computational model for the generation of orchestral music in the

Germanic symphonic tradition: A progress report. In Proceedings of Sound: Space - The Australasian
Computer Music Conference. Sydney. ACMA, 78–84.

M. Thorogood, P. Pasquier, and A. Eigenfeldt. 2012. Audio metaphor: Audio information retrieval for sound-
scape composition. Sound and Music Computing Conference, Copenhagen.

B. Truax. 1980. The inverse relation between generality and strength in computer music programs. Journal
of New Music Research 9, 1, 49–57.

B. Truax. 1985. The PODX system: Interactive compositional software for the DMX-1000. Computer Music
Journal 29–38, 1985.
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