2015 International Conference on Affective Computing and Intelligent Interaction (ACII)

Affect-Expressive Movement Generation with
Factored Conditional Restricted Boltzmann
Machines

Omid Alemi, William Li, Philippe Pasquier
School of Interactive Arts and Technology
Simon Fraser University
Vancouver, Canada
{oalemi,dlal35,pasquier} @sfu.ca

Abstract—The expressivity of virtual, animated agents plays
an important role in their believability. While the planning and
goal-oriented aspects of agent movements have been addressed
in the literature extensively, expressing the emotional state of
the agents in their movements is an open research problem. We
present our interactive animated agent model with controllable
affective movements. We have recorded a corpus of affect-
expressive motion capture data of two actors, performing various
movements, and annotated based on their arousal and valence
levels. We train a Factored, Conditional Restricted Boltzmann
Machine (FCRBM) with this corpus in order to capture and
control the valence and arousal qualities of movement patterns.
The agents are then able to control the emotional qualities of their
movements through the FCRBM for any given combination of the
valence and arousal. Our results show that the model is capable
of controlling the arousal level of the synthesized movements, and
to some extent their valence, through manually defining the level
of valence and arousal of the agent, as well as making transitions
from one state to the other. We validate the expressive abilities of
the model through conducting an experiment where participants
were asked to rate their perceived affective state for both the
generated and recorded movements.

Keywords—artificial agents; affective movement; full-body

movement generation; machine learning

I. INTRODUCTION

Human movement is a form of non-verbal communication,
which can be characterized along three dimensions: function,
execution, and expression. The function dimension of a move-
ment, at a cognitive level, defines the task that the movement
is achieving, such as walking to a destination or picking up a
cup from a table. This is taken into account by the means-end
reasoning in virtual agent literature [1]. Note that for some
movements such as dancing, the functional aspect may not be
the most relevant characterization. The execution dimension of
a movement reflects the pattern of the individual limb motions
that constitute a movement. For example, walking is executed
through locomotion or picking up a cup can be performed
with either the right or the left arm’s motion. The expressive
dimension of movement represents the affective qualities that
the movement is conveying, reflecting the emotional states
felt or communicated by an agent or animated character. In
computer animation, the expression of emotions is necessary
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for increasing the believability of virtual agents [2].

Agent animation can be created manually by animators,
or computational models can be used to generate new ani-
mation automatically. The shift from linear (e.g., films and
comics books) to non-linear (e.g., video games and interactive
systems) media has increased the desire to build models for
movement animation generation. Non-linear media requires a
larger number of assets due to its dynamic and interactive
nature. For movement animation, in particular, one needs to
create variations of the same movement in order to respond to
the need for a diverse set of movements performed in different
forms and with different internal emotional states. However,
creating a large number of assets manually is costly and time-
consuming. Therefore, automatic generation can increase the
efficiency in the production of such media. The motivation
for automatic movement generation is two-fold: to serve as a
computer-assisted creativity tool, and as the motor control for
virtual agents.

Computer-Assisted Creativity: traditionally, animators use
segments of recorded movements of real actors from a
database of motion capture (mocap) data in order to create
natural-looking movements. However, this method limits the
movements to those that exist in the database, and recording
all the possible variations of the same movement is not
feasible. By using a generative model, animators can specify
the characteristics of the movement segments they desire and
the model would generate such movements, not limited to the
existing set of movements.

Virtual Agent Movement: movements of an agent reflect its
inner beliefs, goals, plans, as well as its affective state. While
the literature has extensively addressed the relationship of the
first three components with movement [3], [4], modelling the
mapping between the affective state and the movement is still
an open problem [5], [6].

We present an affect-expressive movement controller based
on the generative capabilities of the Factored, Conditional
Restricted Boltzman Machines (FCRBMs) [7] trained on a
corpus of motion capture data that is tailored specifically for
this project. FCRBM has recently been applied to model the
style of human movement such as the gait or the speed of
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the movement [7], [8]. In this paper, we extend the previous
models by adding explicit control over the expressive qualities
of the movement.

We have recorded the movements of two professional actors
performing standing, walking, sitting on a chair, and expres-
sive arm gestures. Following the model of valence and arousal
[9] for representing affect, each movement type is performed
with 9 different expressive combinations of the valence and
arousal (Figure 2), which covers more emotional states than
similar existing data sets (e.g., 4 emotions in the University of
Glasgow’s database [10]). Our choice of movements reflects
our intention on building a generative movement model which
synthesizes novel movement sequences, according to the goal-
directed and the affective behaviour of an agent represented
by a set of desired movement characterizations. Our corpus
of movements adds emotional variations to those movements
used by Motion-Graph-like structures [3] that create streams
of movements, making transitions from one type to the other
based on a given set of requirements (e.g., following an
arbitrary path). In this paper, we present the first stage of this
model that addresses the expressive dimension of the agent
movements, while adding the support for the function and
execution dimensions is among the future direction of our
work.

We annotate the mocap data based on their valence and
arousal levels and train the FCRBM with its context variable
set to the annotations during the learning procedure. Our
intention is to use these 9 combinations of valence and arousal
in order to build a generalized space of emotions, which allows
us to induce any emotional state even if it is not within the
original 9 combinations that were captured.

Experiments show that the model is capable of controlling
the affective qualities of the generated movements through
manually defining the level of valence and arousal of the
agent. Furthermore, the model can interpolate and extrapolate
between and beyond any two points in the affect space and
generalizes well to unseen combinations. This feature can
be used to create smooth transitions between two affective
states or exaggerate certain states. We validate the ability of
the model to convey the intended affective states through an
experiment where human observers rated their perceived va-
lence and arousal levels from both the recorded and generated
movements. Note that the levels of the valence and arousal
on the labels of the training data reflect the emotional states
that were instructed to the actors. As the instructed or felt
emotions might differ from the emotions felt and perceived by
independent observers, we also collect and study the perceived
emotions, which can be used as the ground truth for future
experiments.

The rest of the paper is organized as follows: Section II
reviews the related work in statistical movement generation.
Section III explains the background of the machine learning
model we use. Section IV outlines our approach to model
affect and our design decisions in the choice of movements
for the training data set. Section V presents the results of our
model. Finally, Section VI summarizes the paper and outlines
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the future directions.

II. RELATED WORK

Approaches to generate movement animation can be divided
into physics-based and data-driven categories. While physics-
based methods can successfully generate physically-valid and
robust movements, it is challenging to capture the expressive
qualities of movement using physical simulation. Data-driven
methods, on the other hand, use pre-recorded movement data
of real human actors and thus can better capture the expressive
qualities of the movement that are visible in the data.

Data-driven movement generation has been approached by
interpolating two movement sequences [11], by concatenating
short movement clips to make longer, functional movements
[12], [3], and by using statistical and machine learning models.
While the first two techniques are mostly limited to the
movements that are available in the recorded data or their com-
binations, machine learning models are capable of generalizing
movement qualities and generating novel movements.

Hidden Markov Models (HMMs) are used to generate
human movement: the style machine extracts the stylistic vari-
ations of movements in an unsupervised manner and controls
the generation using a set of stylistic degrees of freedom
variables [13]. Wang et al. [14] use HMM with mixtures
of Stylized Decomposable Triangulated Graph (SDTG) as
the probability distribution of its visible states in order to
model movement using a supervised style variable. Hidden
Semi-Markov Models (HSMM) are used to parameterize the
movement pace as well as its style [15]. Another study models
expressive gaits during walking by training an HMM on a
reduced-dimension space derived using Principal Component
Analysis [16].

Gaussian process models are also used in order to separate
the stylistic characteristics of movements from their content.
Multifactor Gaussian Process Models [17] are able to generate
movements with stylistic variations (walking and running) that
do not exist in the training data by learning those variations
from other types of movement.

Extensions to Restricted Boltzman Machines (RBMs) have
been recently applied to model human movement. Condi-
tional RBM [18] is used to generate human movement. The
Factored Conditional RBM (FCRBM)[7] extends the CRBM
and includes a context unit which modulates the interactions
between the hidden and visible units as well as the units from
past time steps, which allows for controlling the variations of
movements while sampling new sequences. In another work
[8], the authors propose a two-layer model called Hierar-
chical Factored Conditional Restricted Boltzmann Machine
(HFCRBM) for learning and interpolating movement style
using the middle hidden layer.

The works mentioned above only model movements based
on their functional aspect or based on arbitrary expressive
variations (e.g., chicken walk vs dinosaur walk). Furthermore,
simply choosing between discrete categories of gait style does
not provide a flexible method of controlling the expressivity
of the characters or to producing the transitions from one
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Fig. 1. FCRBM'’s architecture with valence and arousal labels modulating
the interactions between the past visible, current visible, and current hidden
units.

emotional state to the other. To the best of our knowledge, no
previous study has addressed building a generative machine
learning model that allows controlling the expressive qualities
of movement using a set of semantically valid variables such
as valence and arousal of the affective state of a character.

III. MACHINE LEARNING BACKGROUND

Factored, Conditional Restricted Boltzman Machine [7] is
an energy-based machine learning model for capturing the
contextual information of time-series data. FCRBM, as shown
in Figure 1, consists of a set of visible units, which represent
the output at the current time-step, a set of past visible units
which represent the history of the output, and a set of hidden
units that represent a non-linear interpretation of the output and
its past in order to learn the temporal patterns of the training
data. It also uses a context unit which controls the interactions
between each pair of units. By setting the context unit to the
annotation values, the energy landscape of the model changes
which allows the model to learn the relationship between the
contextual information provided by the annotations and the
weights of the connections between the units in an efficient
manner.

We use the FCRBM in modelling the expressive qualities
of movement as it has a number of advantages over other
approaches [19]. First, the hidden states of an FCRBM provide
more representational power over HMMs. Second, using a
feature variable, FCRBM provides the ability to control the
characteristics of generated samples. Third, unlike the Gaus-
sian process models, FCRBM does not need the training data
set while sampling new sequences (except a few frames for
initializing the model).

The multiplicative, three-way interactions make the param-
eters of the model cubic. However, by factoring the weight
tensors into a product of pair-wise interactions (factors), we
can approximate the weight tensor and reduce the order of the
parameters to O(N?). This results in an energy function of
the following form:

Arousal
Alarmed
Tense

Afraid  Angry Aroused

Astonished
Annoyed NVHA Excited
Distressed

LVHA HVHA

Frustrated Delighted

NVNA

/ HVNA

Happy

Valence

LUNA Pleased
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Sad

LVLA HVLA Content

Satisfied
Relaxed
Calm
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NVLA
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Fig. 2. The affect model described by valence and arousal dimensions with
the 9 zones recorded in the training data. The mapping to the categorical
emotion labels are based on [20].
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where v; and h; are the visible and hidden units at the
current time-step, v«; represents the past visible units, z;
represents the context information (labels) at the current
time-step, f represents the index of the factors, a;, and
l;j,t represent the dynamic biases of the visible and hidden
units respectively, and W denotes the weight matrix between
each unit and a factor. The model can be trained using the
Contrastive Divergence algorithm and new samples can be
generated by performing alternating Gibbs sampling. For more
detailed explanation of the algorithms, refer to the work of
Taylor and Hinton [7].

IV. AFFECT-EXPRESSIVE MOVEMENT
A. Affect Representation

Affective states are typically represented using categorical
or dimensional models [21]. Categorical representations define
emotions using a set of labels that come from the everyday
language uses [22]. Examples are anger, happiness, sadness,
surprise, disgust, and fear. Dimensional models break down the
affective states into two or more factors, which are represented
as a point within a space defined by those factors [20]. The
most common example is the PAD model of affect, which
defines emotional states based on arousal, valence, and in case
of social situations, dominance [9].

We use the arousal and valence dimensions (shown in
Figure 2) in order to describe the affective state of movements,
as they define the affective state with two degrees of freedom,
each across a continuum. This makes it more suitable for
learning a generalized model of affect than the categorical
models and allows us to create smooth transitions that are
essential for interactive applications. In future, we plan to
explore other affect dimensions [23]. For example, using
dominance to model the interactive and multi-agent scenarios.



Fig. 3. The skeleton used for the training data

B. Data Gathering

We have captured the movements of two professional actors
(one female, one male). The actors were asked to perform
standing, walking in different directions, and sitting on a chair
as well as expressive arm gestures. These specific movements
are chosen in order to be used to build a generative movement
model that is capable of synthesizing movements, both on-
line and off-line, given any arbitrary set of movement charac-
terizations along the three dimensions of function, execution,
and expression. In this paper, we only address the expression
dimension. All of the recorded motion capture data and the
reference videos are available at http://moda.movingstories.
ca/projects/22-affective-motion-graph.

Each movement sequence is performed in 9 different expres-
sive modulations, as indicated in Figure 2. Low, neutral, and
high levels of valence and arousal are considered. Each mod-
ulation of the emotions is expressed by full body movements
through mainly the body posture (its shape), the body parts’
effort changes, and occasional arm gestures. Each modulation
was also repeated 4 times in order to increase the variability
of the training data.

Before training, we annotate each sequence using a two-
dimensional variable representing their valence and arousal
levels. The variable uses a continuous interval to represent the
low, neutral, and high levels with the values of 1, 2, and 3
respectively. We decided to use this specific range of numbers
after performing experiments with multiple ranges. Note that
the values cannot be zero as such condition can cancel the
weights in the model. Although the chosen modulations in the
training data are discrete points, we rely on the generalization
ability of the model and operations such as interpolation and
extrapolation in order to generate each intended affective state
anywhere in the two-dimensional space and thus the nature of
the annotations is continuous.

The movements were recorded with a Vicon motion capture
(mocap) system and 53 reflective markers. The final mocap
data is mapped to a skeleton with 26 joints as shown in
Figure 3. After consideration with movement experts from the
Laban Institute of Movement Studies in New York, we decided
to use more markers on the spine as it plays an important role
in capturing the body shape changes and postures relevant to
the expressive dimensions.

C. Data Processing

In order to use the data for the machine learning purposes,
we change the representation of the recorded data. The raw
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mocap data contains a sequence of joints’ rotations as well as
the position and orientation of the root of the skeleton. The
root defines the global position and orientation of the body
within a reference coordinate system. The rest of the joints at
each time frame are represented by their rotations relative to
their parent joint in the skeleton hierarchy. In total, each frame
is represented with 72 degrees-of-freedom (DOF).

Initially, the joint rotations were encoded using the Euler
angles parameterization which defines the rotations about each
axis in a local coordinate system. While widely used, Euler
angles parameterization does not always guarantee correct
interpolations and can result in the loss of degrees of freedom
where different combinations of each of its three components
can lead to the same 3D rotation (also known as gimbal lock).
Therefore, we convert the root orientation and the joints with
3 DOF to exponential maps [24] in order to avoid gimbal lock
and the discontinuities that occur with Euler parameterization
of rotations. The final representation of the training data,
after removing the dimensions that are constant, contains 52
dimensions.

D. Controlling the Affect in Movement

Our model is defined by a function of the form:

M; = f(M<y, Fun, Exe, Exp) 2)

where M, represents the movement data at time ¢, M,
represents a set of past movement data, and the Fun, Eze,
and Exp represent the function, execution, and expression
dimensions of the movement, respectively. This corresponds to
our goal to build a parametric motion graph which is capable
of generating streams of movement that can be controlled
across the three dimensions mentioned above. For example,
one can specify that the agent start walking from a standing
posture and follow a given path, while expressing a highly
aroused emotion, and then transitioning to sitting on a chair
with a neutral arousal level. In this paper, we only address
the expression dimension, which is defined by:

Exp = (v,a) (3

where v denotes the level of valence, and a denotes the
level of arousal.

In the case of computer-assisted creativity, the animator
specifies his or her desired v and a values and provides some
initial frames. The initial frames indicate the few poses that
the movement starts from and provides a smooth continuation,
where the generated movements make a transition from the
emotional qualities of the initial frames to the given emotions.
In this case, the initial frames can be the last frames of the
previous segment of the animation or some frames from the
recorded data. By calling the function continuously for the
required amount of frames, it generates movement segments
that are expressive according to the v and a values.

In the case of controlling a virtual agent’s movements, this
function can be used as the motor control for the agent,
receiving its valence and arousal values directly from the
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Fig. 4. The generated walking movements. From left to right: trained on the male actor, HVHA; trained on the female actor, LVHA; trained on the male

actor, LVLA; trained on the male actor, HVLA.

agent’s affective state. At each time step, the function produces
the subsequent frame of movement based on the current
affective state of the agent while smoothly continuing the
movement from previous time steps.

V. EXPERIMENTS
A. Controlling the Expressivity of Movements

In order to test the model’s ability to generate movements
based on any given affective state of an agent, we trained an
FCRBM with the movements of the actor walking a figure-8-
shaped path, down-sampled to 30 frames-per-second, resulting
in around 18000 frames that contain all the combinations of
the valence and arousal levels of one actor. The data included
all the combinations of high, neutral, and low levels of valence
and arousal. We used an FCRBM with 400 hidden units, 300
factors for each three-way connection, and at each time-frame,
the model was conditioned on six past frames of the data.
After 600 epochs, we were able to generate good-quality new
samples except for the low valence and low arousal (LVLA)
movements from the female actor. We believe that this is
due to the very low speed and low energy movements of the
female actor for this specific combination in the training data
which cannot be captured as well as other combinations by
conditioning only on the past six frames. Another shortcoming
of the results is the occasional foot sliding, which is due to the
lack of constraints on the foot movements in the data-driven
approaches.

For the generation, the context unit of the FCRBM is set
to the agent’s affective state while the state was fixed for
each generated sequence. The model was initialized with six
frames of the movement from the same affective state from
the training data. The results demonstrate that the model was
successful in generating new samples as shown in Figure 4.
The videos of both the training and the generated movements
can be found at http://goo.gl/hL5kJa.

B. Generating Transitions

The affective state of the agent can change gradually over
time, and thus we are especially interested in expressing such
transitions in the movements of the agent smoothly. For this
experiment, we use the same model as above except that
we train the model for 2000 epochs. In order to generate
transitions, we gradually change the affective state of the
agent, and consequently, the feature unit of the FCRBM from
one point (e.g., high arousal) to another (e.g., low arousal).
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Fig. 5. The generated transitions between two affective states. From top to
bottom: HVHA to HVLA, HVHA to LVHA, HVNA to LVNA, NVHA to
NVLA. Note that the figures are sampled every 16th frame and are spaced
linearly for visualization purposes.

As shown in Figure 5, the generated movements smoothly
reflect the changes in the state of the agent. This experiment
demonstrates that the model is able to generalize the expressive
characterization of movement and generate movements for the
combinations of the valence and arousal that do not exist in
the training data.!

C. Extrapolation

The model can also extrapolate slightly beyond the valence
and arousal levels that were intended by the actors and exist
in the training data.” Extrapolation can be seen as a form of
exaggeration, which is suggested in the computer animation
guidelines as a way to improve the perception of an affective
state [25]. For example, in order to make an agent look happy,
the model should generate movements that are more happy
than the intended levels by the human actors.

D. Validation of Expressivity

In order to assess the quality of the training data, as well as
the ability of the system to communicate any given affective
state of the agent, we conducted an experiment in which
human participants rated the valence and arousal levels they
perceived in both generated and recorded movements.

All the movement sequences (10 generated, 12 recorded)
were rendered as short video clips of simple skeletal char-
acters. In order to focus only on bodily movements and

IThe videos of the transitions can be found at http://goo.gl/hL5kJa.

2The extrapolated movements are labeled as exaggerated and can be found
at http://goo.gl/hL5kJa.
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aroused
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depressed relaxed

tired

Fig. 6. The affect grid used in the experiment to collect the participants’
perception of the affective state.

cues, the characters did not have a face, skin, or clothing.
The length of each clip was between 10 to 25 seconds. The
order of the clips were randomized for each participant. The
experiment was presented using a web-based questionnaire,
and the participants were instructed to watch each clip and use
a 2-dimensional affect grid (Figure 6) to rate their perceived
valence and arousal levels in the movements. The ratings along
each dimension were mapped to the range of [—1,+1] In
order to avoid any bias against the computer-generated content,
the participants were not told that some clips represented
computer-generated movements.

Fifteen undergraduate students, in a third-year computer
animation course and gathered in a classroom, participated
in the experiment. Instructions were given to them on how to
use the on-line questionnaire before they individually started
watching the videos. There was no time limit for the students
to finish the experiment, and they could watch each clip as
many times as they wanted.

The means of the responses for the valence and arousal rat-
ings are shown in Figure 7. The participants could successfully
classify the arousal levels as high, neutral, and low, although
they perceived these levels with less intensity compared to
the instructed levels. For example, the high arousal recorded
movements were rated on average as 0.44 out of 1.0 in contrast
to 1.0 out of 1.0. Overall, the analysis of the responses show
high inter-rater reliability (Cronbach‘s a = 0.89 for valence,
0.98 for arousal).

The participants could identify the neutral and low valence
levels correctly, while their ratings of the high valence move-
ments averaged near the center of the spectrum. This suggests
that perhaps other cues beyond bodily movements, such as
facial expression or voice, are necessary to correctly express
and identify the valence level. Another possibility is that the
performance of the actors did not contain enough variations
along the valence dimension.

The perceptions of the participants for arousal and va-
lence levels of the recorded and generated movements are
compared using the Mann-Whitney U test. The arousal level
was perceived the same between the recorded and generated
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Mean Arousal Rating

—e—Gen

High Neutral Low

Mean Valence Ratings

High Neutral Low

Fig. 7. The mean ratings for valence (top) and arousal (bottom) for recorded
(rec) and generated (gen) movements. Size of the error bars (95% confidence
interval) are on average 0.0903.

movements (U = 14541,p < 0.227,N1 = 150,N2 =
180). However, the valence level of the generated data was
marginally perceived as less than the recorded data (U =
15294, p < 0.038, N1 = 150, N2 = 180). Overall, the mean
rating of the valence of the generated movements is slightly
lower than the recorded movements.

VI. CONCLUSIONS

We presented a generative model of affect-expressive move-
ments, which allows controlling the emotional qualities of its
output. The emotional qualities are represented and modulated
by two continuous variables describing the valence and the
arousal level of the agent. We applied the model on a data
set of walking movements performed by two professional
actors while modulating their movements based on different
combinations of valence and arousal levels. The validation
results show that the model can successfully express the affect
along the arousal dimension. However, expressing the valence
is shown to be not sufficient at the moment.

As future work, we plan to extend our model towards the
following directions: (1) improve the expression of the valence
dimension; (2) create a model that allows controlling the
function and execution dimensions of the movement as well
as its expression, extending the previous works on parametric
motion graphs to support affect expression; (3) use the ground-
truth labels from the experiment to train the model; and (4) use
more dimension than valence and arousal to represent affect,
as suggested in the literature [23].
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