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ABSTRACT

Music composition is an intellectually demanding human
activity that engages a wide range of cognitive faculties.
Although several domain-general integrated cognitive ar-
chitectures (ICAs) exist—ACT-R, Soar, Icarus, etc.—the
use of integrated models for solving musical problems re-
mains virtually unexplored. In designing MusiCOG, we
wanted to bring forward ideas from our previous work,
combine these with principles from the fields of music per-
ception and cognition and ICA design, and bring these ele-
ments together in an initial attempt at an integrated model.
Here we provide an introduction to MusiCOG, outline the
operation of its various modules, and share some initial
musical results.

1. INTRODUCTION

In their two-part survey of cognitive approaches to music
computation, Purwins et at. [1, 2] highlight the important
role that cognitive modelling has played in the field. How-
ever, they also underscore the general absence in music
computation research of integrated approaches like those
central to the field of ICA design [3, 4]. Rather than ad-
dressing the overall problem of modeling intelligent mu-
sical behaviour, research programs have tended to focus
on isolated functions like key estimation, beat induction,
voice-separation, melodic segmentation, and so on. Con-
versely, in the field of ICA design, models like ACT [5],
Soar [6], and Icarus [7] have taken a ‘top-down’ approach,
first looking at the roles that perception, learning, mem-
ory, and action might take in supporting human-level intel-
ligence, then designing modular architectures integrating
these primary functions, and testing their performance in
domain-general tasks. In such research, the focus is on the
theory embodied by the architecture, and the validity of the
theory is judged on its performance in solving real world
problems, or replicating results from the experimental lit-
erature.

Of course, in designing a cognitive architecture specif-
ically for music, we are not attempting to model intelli-
gence in general. Rather, we are proposing a ‘top-down’
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approach to solving the ‘problem’ of music generation, us-
ing an architecture of interconnected modules.

2. MUSIC PERCEPTION & COGNITION

The field of music perception and cognition research is im-
mense, and deeply interdisciplinary, covering areas rang-
ing from the study of musical creativity in children, to the
detailed neurobiology of music processing in the brain. In
our work, we are particularly interested in the question of
musical memory, and in how the mental representation of
musical knowledge can support the specialized task of mu-
sic composition.

In his book Music and Memory [8], Bob Synder pro-
vides an overview of the field. Of particular interest for
our work are the principles of association, cueing, group-
ing, and chunking, and the manner in which these func-
tions support the efficient use of mental resources. As-
sociation is the process through which events that occur
in close temporal succession, or are related in some way,
form connections in memory. Cueing is the process by
which “activating one of the associated memories may also
activate another memory with which it has formed an asso-
ciation” [8]. Grouping and chunking are processes through
which singular memories are combined into higher level
concepts. Specifically, grouping occurs when “some as-
pect of the auditory environment changes sufficiently” [8],
and a perceptual boundary is formed. Chunking is the pro-
cess through which groupings of single pitches are asso-
ciated into “motifs”, motifs associated into “phrases”, and
so on. Chunking allows these groupings to form singular
mental concepts, optimizing the limited capacity of “short-
term” memory through hierarchical nesting.

Synder also outlines three general levels of memory:
echoic memory, Short-Term Memory (STM), and Long-
Term Memory (LTM). Echoic memory operates on a very
short time-scale, and is essential for low-level perceptual
processes like onset detection, pitch perception, and so on.
STM operates on a slightly longer time-scale—from 3 to
5 seconds (or 7± 2 discrete items)—and is essential for
higher cognitive functioning. For our work we prefer to
think in terms of the more general notion of “Working
Memory” [9–11], which accommodates a broader concep-
tion of how short-term storage might function in a mu-
sic learning/generation system. Finally, LTM represents
the conventional notion of human knowledge as a semi-
permanent store of information acquired through learning
and experience.
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3. INTEGRATED COGNITIVE ARCHITECTURES

One of the primary goals of ICA design is to model intelli-
gence at the architectural level, as a general, system-level
theory. Langley et al provide an overview of the main ideas
and themes in the field, and outline four important systems:
ACT-R, Soar, Icarus, and Prodigy [12].

Such architectures generally have a core set of functions
in common: 1) Recognition, 2) Decision making, 3) Per-
ception, 4) Prediction, 5) Problem solving and Planning,
6) Reasoning, 7) Acting, and 8) Learning. Different ICAs
have different policies for handling these functions, and
may attribute different degrees of importance to each one.
In some cases, a given function may be represented ex-
plicitly, as a subroutine or module, while in others it may
be implicit in the design of the knowledge representation
(e.g., an episodic memory system may be considered im-
plicilty predictive). One of the oldest cognitive architec-
tures, ACT-R, includes sensory modules (Perception), mo-
tor modules (Action), an intentional module (Decision mak-
ing, Problem solving, Planning, Reasoning), and a declar-
ative module, or LTM (Recognition, Learning). Although
the architecture doesn’t possess an explicit STM, each mod-
ule has its own ‘buffer’, which acts as a short-term store for
relational knowledge structures (referred to as ‘chunks’).

Although the architectural details and implementation
strategies vary, this basic process of perceiving the environ-
ment, weighing possible actions against past experience,
and choosing actions to help achieve goals, is common to
all ICAs.

4. MUSICOG: AN INTEGRATED MODEL

Just as the integrated cognitive systems discussed in Sec-
tion 3 are modular in design, so too is MusiCOG divided
into a set of processing modules, which work in conjunc-
tion when carrying out perceptual/cognitive tasks. An over-
view of the MusiCOG design is shown in Figure 1.

Working Memory

Production 
Module

Cueing Model
(Long-term Memory)

Perception 
Module

Streaming & Segmentation

MusiCOG
Learning & 
Inference

Input Output

Figure 1. An overview of the MusiCOG architecture.

4.1 Processing Modules

We will start by introducing the basic processing modules
in MusiCOG and outlining the music representations used
when processing musical input.

Perception Module PE: Responsible for accepting musical
input, separating polyphonic voices into streams, and per-
forming low-level melodic segmentation on each stream.
Working Memory WM: A temporary memory for musical
input, responsible for chunking familiar musical patterns
and maintaining the set of active streams. In Figure 1, it
will be noted that there is a considerable overlap between
the PE and the WM, indicating the high degree of interac-
tion between the two modules, particularly when handling
processes of streaming and segmentation.
Cueing Model CM: A Long-Term Memory that learns the
hierarchical structure of monophonic musical lines. The
CM can learn from multiple, concurrent parts, and can
build associations between individual parts in polyphonic
textures. Formally, it is a hierarchy of linked graphs, each
of which represents a different level of musical structure,
similar to “time-span reductions” in Lerdahl and Jackend-
offs “Generative Theory of Tonal Music” (GTTM) [13].
The CM is a revised version of our previous “Closure-
based Cueing Model” (CbCM) [14]. As in the CbCM, each
level in the CM can represent information using nodes at
three different “degrees” of musical specificity. The zeroth
degree represents Schema information, like pitch contour.
The first degree represents musical Invariance, such as
pitch interval, and the second degree represents Identity
information; e.g., MIDI note number. Degrees are hier-
archically dependent, so that a given Identity node will
implicitly reference a single Invariance node, which will
implicity reference a single Schema node.
Production Module PM: Responsible for the generation
of musical output. During the generation process, the PM
draws on the corpus-based knowledge of musical struc-
ture learned by the CM, and also on the local, cognitively
salient material held in WM.

4.2 Music Descriptors

MusiCOG uses the conventional descriptors for symbolic
pitch (C4 = middle-C), pitch interval (distance in semi-
tones), and pitch contour (+, 0, -). For rhythm, we rep-
resent the absolute timestamps of events in real-numbered
beats, such that whole numbers indicate beats and frac-
tional values indicate offsets within the beat. We use
the Inter-Onset Interval (IOI), in ms, to represent rhyth-
mic Identity values. For rhythmic contour (Schema), we
use the notation described above, and for Invariance we
use a novel representation called the “Beat Entry-Delay”
(bED). The bED indicates the duration in beats of an on-
set from the local beat of the preceding onset. Figure 2
gives an example of the bED representation of a simple
rhythmic pattern. For events 1, 5, and 6, bED = 1.0 indi-
cates that the event falls direclty on the beat, whereas event
2, bED = 0.5 is a fractional position. For fractional values
where bED > 1, as with event 3, the integer part indicates
the number of beats since the last detected beat. The func-
tion for deriving bEDt from two consecutive timestamps
(nt−1,nt) is given in Equation 1. In a generative context,
when given the previous timestamp nt−1 and bEDt , a new
timestamp can be calculated using Equation 2.

Since the bED representation encodes onset times with
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1          2                   3      4     5               6
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Figure 2. The Beat Entry-Delay representation.

reference to a local beat, it is particularly convenient for
generation, as it allows generated rhythms to automatically
align themselves with the beat structure of the new musical
context. It is our feeling that the bED mirrors the cognitive
reality of listeners more naturally than conventional onset
interval-based (or ratio-based) representations.

bEDt = (nt −bntc)+(bntc−bnt−1c) (1)

nt =

{
bnt−1c+bEDt +1 if bEDt ≤ (nt −bntc)
bnt−1c+bEDt otherwise (2)

5. MUSIC PROCESSING IN MUSICOG

MusiCOG is best understood as an agent that listens to
music, retains certain features of the musical surface, and
gradually learns how the music is structured. When music
has been learned, the agent can draw on the learned struc-
ture to generate novel musical forms.

5.1 The Perception Module (PE)

At initialization, the PE contains an empty set of streams
Ω = /0. When MIDI inputs are received, they are col-
lected into a new “group” Gt , where all events in the group
have approximately the same onset time (±30 ms). With
no active streams, the PE creates a new stream for each
event. For future inputs, when |Ω| > 0, events in Gt are
assigned to streams using a cost-based voice-separation al-
gorithm similar to other gestalt-based approaches [15, 16].
The PE’s voice-leading cost calculation includes measures
for pitch proximity, rhythmic proximity, melodic well-
formedness, and avoidance of voice-crossings.

Once the events in Gt have been assigned to streams,
the PE attempts to locate low-level segment boundaries
for each active stream. Because we are modelling the no-
tion of ‘online’ perception, we cannot rely on the use of a
look-ahead function, as is common in melodic segmenta-
tion algorithms (for an overview, see [17]). However, due
to the integrated nature of MusiCOG, we are able to in-
clude an influence from predictability, based on CM recog-
nition (see Section 5.3). Taking this into account, we found
that by using the inverse of the voice-leading cost, the pre-
dictability, and a small influence from pitch contour change
[18], acceptable segmentation could be achieved.

When PE processing is complete, the incoming events
from group Gt will be separated into n > 0 streams, and
‘bottom-up’, event-level segment boundaries will be de-
fined.

5.2 The Working Memory (WM)

The WM is a temporary buffer for musical elements. These
elements are stored in WM as hierarchical lists of events

(i.e., notes), which represent either “segments” or “chunks.”
Segments can be single events, or sequences of chunks,
whereas chunks are essentially ‘wrappers’ around segments.
Elements are retained in WM based on a combination of
the current WM capacity, element recency, and element
cognitive salience. Capacity and recency are approximated
using two parameters, n and m, which act as thresholds on
the number of elements stored, and the allowable age of
any given element, respectively. Element recency is taken
as the timestamp of the last event in a given segment or
chunk. Cognitive salience is a function of the degree of
“musical parallelism” [13, 19] a given element shares with
the current contents of WM; i.e., how many musically sim-
ilar elements are currently being stored. The estimation of
similarity is a complex task [19–21], which admittedly de-
serves closer attention. But as a provisional definition, we
say that two elements are similar if they share the same
Schema representation (e.g., matching contour). The to-
tal set of similar elements is thus analogous to Deliege’s
notion of the “imprint” [22].

Rather than increasing the cognitive salience of elements
as parallelisms are detected, we instead use parallelism as a
means to prevent decay of the cognitive salience. Each el-
ement is initially assigned a cognitive salience value based
on CM recognition. This value will decay as a linear func-
tion of time. However, if a given stored element lacks par-
allelisms with the contents of WM, the rate of decay is ac-
celerated, reducing the element’s longevity in WM. When
the number of stored elements exceeds the WM’s capacity
n, any element with a recency greater than m seconds and
a cognitive salience less than a given threshold value, will
be discarded (in our implementation, n = 9, and m = 5).
Since the duration of retention is a function of the musical
content, there is no a priori maximum retention time.

5.2.1 Chunking in the WM

When a new stream S is created, an empty segment is added
to the end of the stream. As the PE assigns events to
streams, each new event is appended to the end of the
segment at S1. When the PE detects a low-level segment
boundary, a new segment is created for the boundary event,
and inserted at S1. The WM then “closes” the segment at
S2, indicating that it is complete.

At each time-step, the WM passes the segment at S1 to the
CM for learning/inference. When a segment is recognized
by the CM, it is “wrapped” into a new chunk, which re-
places the segment in WM. For each segment vL (where L
indicates the segment’s hierarchical level) that is converted
to a chunk C(vL) in this manner, WM capacity is increased
by

∣∣vL
∣∣− 1 memory spaces. Segments that are not recog-

nized will eventually be discarded from WM. The calcu-
lation of segment/chunk recognition is based on the CM’s
ability to infer transitions (⊥ = 0, Schema = 0.3, Invari-
ance = 0.8, and Identity = 1.0). The final recognition
level is the mean recognition of all inferred transitions in
the segment/chunk.
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5.2.2 Phrase Boundary Detection in the WM

The WM is also responsible for higher-level phrase seg-
mentation, which is generally thought to be a ‘top-down’,
cognitive process [23]. In MusiCOG, phrase boundaries
are associated with points of musical parallelism—i.e., with
the repetition of motivic patterns. Looking at the melody
from Mozart’s 40th Symphony (Figure 3), we can see two
distinct phrases, the second of which begins one scale-step
below the first. The asterisk marks the point at which the
phrase boundary is identified.

& 44
Violin

Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ

&5 œ œ Œ œ œ œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Œ œ œ

&10 œ# œ# œ# œ ! Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

*

1.

2.

Figure 3. Parallelism in Mozart’s 40th Symphony.

The WM finds these parallelism-based boundaries by look-
ing for similarities between a newly formed chunk C(vL)
and the older chunks stored in WM. When a familiar chunk
is perceived in a larger phrase structure, this segment can
serve as a phrase boundary [23]. To find such boundaries,
the WM iterates over the contents of stream S, starting with
the oldest element Sk, and searches for a parallelism be-
tween C(vL) and a preceding chunk ε . If a parallelism
is found, a new ‘chunk-segment’ is started, to which all
contiguous, intervening chunks are added, until C(vL) is
reached, or the formal level of ε changes. This approach
can be used for any level beyond L1, allowing for the de-
tection of parallelism-based boundaries at arbitrarily high
levels of form. The only limit is the capacity of WM, which
is defined primarily by the ‘chunkability’ of the music.

5.3 The Cueing Model (CM)

The CM represents MusiCOG’s Long-Term Memory. It is
a multi-dimensional, hierarchical graph, which is trained
on segments from WM, and is used to make inferences on
the contents of streams. It is an online learner, which learns
to approximate the formal structure of a corpus of training
works.

In contrast to the CbCM, which encodes surface events at
all levels, in the CM, events are encoded at only L1 and
L2: L1 encodes short segments comparable to “motifs”,
whereas L2 encodes sequences of motifs, to form “phrases”
(see Figure 4). All higher levels encode sequences of paths
from their adjacent sub-levels, so that L3 encodes sequences
of L2 paths, L4 encodes sequences of L3 paths, and so on.

As mentioned in Section 4.1, the CM encodes events at
different levels of musical specificity, referred to as “de-
grees” (called “states” in the CbCM—see [14]). Figure 5
shows all three degrees of the L1 graph created by the two
opening phrases from Mozart’s 40th Symphony. It can be
seen that each degree forms a separate directed graph, at
a different level of specificity. It is worth noting that, al-
though the Schema graph will always be a tree, the higher-
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&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Ó ! !

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

& 44Violin Ó Œ œb œ œ œb œ œ œ œ œ œb Œ œ œ œ œ œ œb œ œ œ œ Œ œ œ

&6 œ œ œ œ œ œ œ œ Œ œ œ œ# œ œb œ œ œ œb œ Ó ! !

&12 Ó Œ œb œ œ œ# Œ œ œ œ œb Ó !

Symphony No. 40
W.A. Mozart

Score

-   0 - 0
-   0    +

(0)         0             0!

L1: Motifs

L2: Boundaries

Figure 4. Encoding phrases as a combination of Motifs
(L1) and Boundaries (L2).

degree graphs will not, allowing for increased compres-
sion.

k=1 k=2 k=3

Figure 5. L1 of a CM trained on the opening of Mozart’s
40th Symphony, showing all three degrees.

The CM produces fundamentally the same hierarchical
structure as the CbCM, but the connectivity of the graph
reveals significant differences. In our previous approach,
we attemtped to learn the entire structure incrementally.
This meant that across-level connections encoded the rela-
tionships between lower-level segment endings (i.e., “ter-
minal nodes”) and higher-level segment boundaries. How-
ever, with the addition of the WM, we are able to learn
directly from sequences of chunks, and are thus able to
build higher-level sequences somewhat independently of
the lower-level sequential structure.

The difference between the two approaches is illustrated
in Figure 6. Here we see that, due to the incremental learn-
ing pattern, the CbCM encodes +1 transitions at each L2
node, representing the relationtionship between the D that
ends each segment and its subsequent boundary E[. In
contrast, the CM encodes only the relationships between
boundaries (i.e., interval 0). Thus, although the L2 Iden-
tity information is the same (i.e., sequences of E[s), the en-
coded Schema and Invariance relationships are not. We
believe the CM’s encoding to be a vast improvement, since
it more accurately captures phrase-level structure and is
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thus better able to generalize to different musical situa-
tions. For example, a CM trained on the first two com-
plete phrases of the Mozart melody, as illustrated in Fig-
ure 7, will infer the inherent similarity of all phrases built
from the direct repetition of L1 segments/motifs, whereas
the CbCM will not.

Figure 7 also shows the links connecting nodes on differ-
ent levels. The dotted lines indicate boundary links, and
the arrows between levels indicate cueing links. Bound-
ary links are used to connect segment boundaries to lower-
level terminal nodes, whereas cueing links connect termi-
nal nodes to subsequent boundaries. In Figure 6 it will
be noticed that whereas boundary links in the CM connect
to terminal nodes, the CbCM always connects boundary
links into depth k = 1—a consequence of the incremen-
tal learning process. The CM is able to make these more
specific boundary links because it learns from complete
chunks (i.e, with a boundary and terminal) at higher lev-
els. Also note that whereas the CbCM always omits the
first event (the initial E[), the CM encodes all events on
the musical surface.

k=1 k=2 k=3

Figure 6. Different approaches to encoding form in the
CbCM and the CM.
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Figure 7. Schema view of a trained CM, showing bound-
ary links (dotted) and cueing links (arrow).

5.4 The Production Module (PM)

The PM is responsible for generating musical output, with
the underlying philosophy that music comprehension is sup-

ported by the retention of musical materials in WM. This
idea can be related to Schmidhuber’s theories of compres-
sion and creativity [24]. Through motivic exploitation—
i.e., the use of musical parallelism—composers are able to
guide listeners through the musical discourse, introducing
thematic materials in an intelligible manner. Models that
focus primarily on reproducing the transition probabilities
of a training corpus generally fail to produce convincing
results because they ignore musical parallelism (or achieve
it only accidentally); the IDyOM model of Wiggins et al.
is a case in point [25].

For our current purposes, we will discuss generation in
terms of the continuation of a user-defined musical ‘seed.’
PM generation combines high-level planning from the CM
with the integration of local contextual information from
WM. There are two basic approaches that can be taken: 1)
Generate a high-level plan and fill-in the surface details ac-
cording to the plan (i.e., ‘top-down’), and 2) Incrementally
infer phrase-level plans, based on WM content, and gradu-
ally ‘unfold’ a high-level plan (i.e., ‘bottom-up’). It has
been suggested that compositional processes enlist both
approaches, used in alternation [26].

The PM begins by running CM learning/inference on the
user seed, so that the WM reflects whatever content and
structure can be inferred from the seed. Generation is then
treated as a means-end reasoning problem, where ‘means’
are represented by the state/contents of the WM and CM,
and the ‘end’ is the generation of well-formed musical seg-
ments that reflect an appropriate degree of musical paral-
lelism. Since parallelism is generally recognized in the
context of higher-level form (see Figure 5.2.2), the PM
must next determine a formal structure or ‘plan.’

5.4.1 Formal Planning

In a ‘top-down’ approach to form generation, the PM first
probabilistically generates a high-level path (or plan) PLn

k ,
using the transition probabilities encoded by the Ln edges.
It then proceeds to ‘unwind’ a formal structure by follow-
ing boundary links from Ln to terminal nodes Ln−1η i

kθ , and
extracting paths of the form (Ln−1η i

1, · · · ,Ln−1η i
kθ). This

approach can be used with a CM of arbitrary size.
In a ‘bottom-up’ approach, form generation begins from

the stream state Sδt (i.e., determined by the contents of
WM) then probabilistically unfolds the higher-level form.
In this case, the probabilistic selection incorporates evi-
dence from Ln−1, as provided by cueing links (described in
Section 5.3). For example, if the user seed is the segment
{E[ D D B[}, and Sδt =

{
L1η0

3 (+),L2η0
1 (0),L3η0

1 (0)
}

(in
Figure 7) , we can see that the cueing link from L1η0

3 (+)
provides support for a transition to L2η0

4 (+). Once we
have chosen the L2 transition, we can probabilistically gen-
erate the remainder of the L2 path.

5.4.2 Motivic Exploitation and Parallelism

With a formal plan in place, the PM must next determine
a degree of parallelism to guide the generation of L1 seg-
ments. Looking carefully at Figure 7, we notice that the
link structure encodes the parallelism of the melody. Here,
both L2η0

1 (0) and L2η0
2 (0) have boundary links to L1η0

2 (0),
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indicating that the same contour has been repeated. The
parallelism of a given Ln path can thus be calculated as
the ratio between the number of unique terminal nodes and
the number of boundary links connecting those terminal
nodes. However, it may be the case that two (or more)
terminal nodes share intersecting paths, suggesting a sub-
segment relationship (i.e., {0 - 0} and {0 - 0 +}). In such
cases, we calculate the fractional parallelism as the ratio
between the subsegment and segment path lengths. This
value is then used to scale the boundary count of the longer
path’s terminal node.

The calculated parallelism acts as a guide for the PM
when deciding whether to re-use segments from WM, or
to generate new segments from the CM. The PM regulates
this decision dynamically, by comparing the parallelism of
the current plan (an L2 path) with the parallelism of the
WM contents. If the plan’s parallelism is greater than that
of the WM, the PM will use WM segments during genera-
tion. However, if the WM’s parallelism exceeds that of the
plan, the PM will generate segments from the CM.

When using WM contents for generation, the PM makes a
weighted probabilistic selection from the segments in WM,
using cognitive salience as a weighting. Once a segment
has been selected, its terminal node is used to extract a
path from the CM. Note that this path will not necessarily
produce a direct quotation, but it will replicate the Schema
(i.e., contour) of the WM segment. The boundary event for
the new segment will be derived from the current L2 node
in the formal plan, and the remainder of the segment will
be derived from the L1 path.

5.4.3 Feedback: Acting and Perceiving

In order to complete the agent metaphor, MusiCOG must
not only act in its world, it must also perceive the results
of its actions. To realize this, we feed the segments gen-
erated by the PM back into the PE. This is an important
step, because it allows the model to evaluate its actions,
and modify its behaviour accordingly, providing a form of
intentionality. In the current version, this intentionality is
limited to a very simple goal: to generate segments with
well-defined boundaries, which support the PE’s grouping
mechanisms.

To achieve this, we include a routine to evaluate each
transition in the generated segment using the stream sep-
aration/segmentation functions of the PE (see Section 5.1).
If a given transition fails to produce the desired result—i.e.,
the beginning of a segment is not perceived as a boundary,
or boundaries are percieved where they are not intended—
the PM will attempt to find an alternative solution. When
no solution can be found in the CM, a simple, rule-based
generation routine attempts to create a transition that will
satisfy the PE’s requirements. This step has the added ben-
efit of introducing novelty in a manner that is constrained
by the overall goals of the system (i.e., PE grouping, seg-
ment structure, contour, and formal planning). Further,
since novel transitions generated in this manner become
inputs to the PE, they will be retained by WM and learned
to some degree by the CM, leading to complex emergent
behaviour.

6. IMPLEMENTATION DETAILS

In our implementation we handle rhythm using a separate
CM level, placed at the bottom of the model (i.e., L0). This
level is trained on the rhythmic representations discussed
in Section 4.2. The rhythmic information for boundary
events (i.e., at L2) is encoded by associating L2 nodes with
L0 nodes, using a special association link. An association
α(a,b) is a weighted connection between any two nodes a
and b, the weight of which indicates how often both nodes
have been visited at the same time step. During generation,
L0 paths are generated in the same manner as L1 paths, and
the boundaries are added using weighted probabilistic se-
lection from the L2 rhythmic associations. When the PM
draws motivic material from WM, the rhythm is taken di-
rectly from the chosen WM segment.

In the current version, generation is monophonic. How-
ever, because CM learning/inference already build associa-
tions between all nodes visited at each time step, across all
streams, experimentation with polyphonic generation will
begin in the near future.

MusiCOG is the learning/generation system for our in-
teractive composition software ManuScore. In the Manu-
Score interface, the user is given two options for control-
ling how MusiCOG will vary motivic material. With the
default setting, the PM will draw all motivic material from
WM, and will increases/decrease parallelism by choosing
between high/low salience WM segments. When this op-
tion is switched off, the PM will reduce parallelism by gen-
erating novel segments directly from the CM.

7. PRELIMINARY FINDINGS

7.1 The PE, WM, and CM

We first trained MusiCOG on the Partita in A minor for
solo flute, BWV 1013, by J.S. Bach. Each movement was
trained separately, and the total number of inputs received,
and nodes produced, was recorded as each movement was
learned (see Figure 8). It will be noticed that, with the
exception of the Sarabande, the percentage of nodes to
inputs decreased with each movement, indicating the ex-
ploitation of previously learned material. Training on the
Allemande added 1297 nodes for 3066 items of informa-
tion (i.e., contour, interval, and pitch data for 1022 events),
giving a total compression of 42%. Subsequent training
on the Courante added 1006 nodes for 2673 inputs (com-
pression = 38%). The Sarabande added 427 nodes for
903 inputs (compression = 47%) and finally, the Bourée
Anglaise, added 431 nodes for 1587 inputs (compression
= 27%). Looking more carefully at the spike in node cre-
ation for the Sarabande it was noted that this work pro-
duced a significant number of new nodes during the sec-
ond training pass. This is mostly likely due to changes in
low-level boundary detection between the first and second
passes (resulting from increased predictive success) lead-
ing to subsequent revision of the segment structure.

The chunking structure in WM produced by the opening
of the Allemande of BWV 1013 is shown in Figure 9. Due
to the influence of prediction on segmentation, hierarchi-
cal structure tended to improve with training. It was also
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Figure 8. Nodes learned during training on each consec-
utive movement from Bach’s BWV 1013. The “Inputs”
line indicates the percentage of the total inputs contained
in each movement. The top line indicates the ratio of nodes
created to inputs (as a percentage), and the lower three
lines indicate the nodes produced at each degree.

noted that, in some cases, L1 chunks would fail to be chun-
ked at L2, resulting in an incomplete hierarchy. This could
be solved by appending the isolated L1 chunks to the pre-
ceding L2 chunk.

Flute

Fl.

4

Fl.

13

Fl.

22

Fl.

31

Fl.

40

Fl.

49

Fl.

58

Fl.

67

Fl.

77

44&

{3/{2/{1^E5  A5  Ab5  A5  }{1^|(1.25)C6  A5  E5  A4  }}
{2/{1^|(2.25)E5  A5  Ab5  A5  }{1^|(3.25)C6  A5  E5  }{1^|(4.00)A4  C5  E5  F5  }}}
{3/{2/{1^|(5.00)Ab4  F5  E5  D5  C5  }{1^|(6.25)E5  Ab5  A5  }}
{2/{1^|(7.00)E4  D5  C5  B4  A4  }{1^|(8.25)C5  E5  F5  }}}

L2

L3

L2 L2

L3

L2

&

&

&

&

&

&

&

&
3

&

≈ œ œ œ# œ œ œ œ œ œ œ œ œ
œ œ œ œ œ œ œ œ# œ œ œ œ œ œ# œ

œ œ œ œ œ œ œ œ

œ# œœœ œœ œ# œ
œœœœ œœ œ# œ œœ œ# œ œœ œ# œ œœœœ œ# œœœ œ œ# œ œ

œ œ œ œ# œœœœ œœœœ œ œ œœ œ œb œœ œ œb œœ œœœœ œœœœ œœœœ

œœœœ œœœœ œœ œœ œœœ œ# œœ œ œn œœœ œ œ œ œœ œœœ œ œ œ œœ

œœ œb œ œb œ œœ œœ œb œ œb œ œœ œ# œ œb œ œb œ œœ œ# œœœ œœœœ œ
œœœ

œœœœ œ œ# œœ œœœœ œœœ œ# œ œ œ œ# œb œœ œ# œ œœ œ# œ œ# œœ œœœ
œ

œ# œœœ œœ œ#
œ œœœœ œ# œ œ# œ œb œœœ œb œœœ œ œn œœ œ# œœœ œ œ# œn œ

œb œ œ# œ œb œn œ# œ œ# œ œ# œn œœœ œb œ œ# œb œ œ œn œœ œ# œœœ œb œ# œœ œœœ œ#

œ œ# œœ œ œ# ™ œ œ œ ≈œœ œ# œ œ œœ œœœ œ# œ œ œœ œœœœ œ# œœœ

œœ œ# œ
œœœœ œœœœ œ# œœœ œœ œ# œ

œœœœ œœ œ# œ œœ œ# œ œœ œ# œ

Flute

Fl.

4

Fl.

13

Fl.

22

Fl.

31

Fl.

40

Fl.

49

Fl.

58

Fl.

67

Fl.

77

44&

{3/{2/{1^E5  A5  Ab5  A5  }{1^|(1.25)C6  A5  E5  A4  }}
{2/{1^|(2.25)E5  A5  Ab5  A5  }{1^|(3.25)C6  A5  E5  }{1^|(4.00)A4  C5  E5  F5  }}}
{3/{2/{1^|(5.00)Ab4  F5  E5  D5  C5  }{1^|(6.25)E5  Ab5  A5  }}
{2/{1^|(7.00)E4  D5  C5  B4  A4  }{1^|(8.25)C5  E5  F5  }}}

L2

L3

L2 L2

L3

L2

&

&

&

&

&

&

&

&
3

&

≈ œ œ œ# œ œ œ œ œ œ œ œ œ
œ œ œ œ œ œ œ œ# œ œ œ œ œ œ# œ

œ œ œ œ œ œ œ œ

œ# œœœ œœ œ# œ
œœœœ œœ œ# œ œœ œ# œ œœ œ# œ œœœœ œ# œœœ œ œ# œ œ

œ œ œ œ# œœœœ œœœœ œ œ œœ œ œb œœ œ œb œœ œœœœ œœœœ œœœœ

œœœœ œœœœ œœ œœ œœœ œ# œœ œ œn œœœ œ œ œ œœ œœœ œ œ œ œœ

œœ œb œ œb œ œœ œœ œb œ œb œ œœ œ# œ œb œ œb œ œœ œ# œœœ œœœœ œ
œœœ

œœœœ œ œ# œœ œœœœ œœœ œ# œ œ œ œ# œb œœ œ# œ œœ œ# œ œ# œœ œœœ
œ

œ# œœœ œœ œ#
œ œœœœ œ# œ œ# œ œb œœœ œb œœœ œ œn œœ œ# œœœ œ œ# œn œ

œb œ œ# œ œb œn œ# œ œ# œ œ# œn œœœ œb œ œ# œb œ œ œn œœ œ# œœœ œb œ# œœ œœœ œ#

œ œ# œœ œ œ# ™ œ œ œ ≈œœ œ# œ œ œœ œœœ œ# œ œ œœ œœœœ œ# œœœ

œœ œ# œ
œœœœ œœœœ œ# œœœ œœ œ# œ

œœœœ œœ œ# œ œœ œ# œ œœ œ# œ

Figure 9. A sample of MusiCOG’s hierarchical segmenta-
tion of the Allemande from Bach’s BWV 1013.

To test stream separation we trained the system on the
fugues from Bach’s BWV 846 and BWV 853 from the
Well-Tempered Klavier. Performance was generally ac-
ceptable, though the system did have difficulties with voice-
crossings, which tended to occur at points where a sin-
gle note was shared by two adjacent voices. Training on
the 846 fugue alone added 1375 nodes for 2202 inputs,
yielding a compression of %62, while subsequent training
on the 853 fugue added only 1847 nodes for 4167 inputs
(compression = %44), again indicating considerable ex-
poitation of previously learned material.

Thorough testing of PE, WM, and CM performance will
be the subject of a future study.

7.2 Generation in the PM

Screen capture videos of live generation within ManuScore
can be viewed at the following url:

http://dl.dropbox.com/u/8429426/index.html.

All examples begin with a pre-composed musical ‘seed’,
from which MusiCOG generates an extended continuation.
Generation in all examples ends when MusiCOG’s gener-
ated formal plan is completed. Because continuation was
chosen as the compositional task, formal generation is car-
ried out using the ‘bottom-up’ approach discussed in Sec-

tion 5.4. Because the PE currently has no model of key
or scale induction, it is not expected that generation will
maintain appropriate key/scale relationships. Our interest
rather is in the exploitation of motivic material, and the
development of an overall formal structure.

In Example 1, trained on Bach’s BWV 1013, we set
the system to vary motivic material by generating novel
segments from the CM. A pre-composed “seed” is given,
which the system extends through continuation. The seed
was written in the style of J.S. Bach, but was not directly
drawn from the training material. It will be noticed that
the system is quick to generate material not contained in
the seed, but stylistically consistent with the training set.
Of note also is the fact that the system is quick to exploit
its own generated motivic material, and that, as the work
develops, material is drawn from both the user seed and the
system’s own generated content.

In Example 2, MusiCOG is set to generate movitic vari-
ety by alternating between low and high salience motifs,
resulting in more tightly intergrated motivic exploitation,
and more limited motivic variety. It will be noted that, as
generation is primarily interval and contour based, the mu-
sic quickly departs from the key implied by the seed, as
was expected.

In Example 3 and Example 4, we trained the system on
the solo part from Maxwell’s conerto for flute and ensem-
ble, Vovere. This is a single-movement work, for which
the system created 3506 nodes for 4584 inputs, giving a
rather modest compression of 77%. However, it was noted
that the PE often produced exceptionally long L1 segments,
likely due to the fact that L1 segmentation uses a fixed per-
centage of the standard deviation of cohesion as a bound-
ary condition. A more dynamic boundary condition would
maintain more appropriate segment lengths, which would
likely improve compression.

The seed for these examples was composed by Maxwell,
and does not quote directly from the training work. Mo-
tivic variety in both examples was provided by CM gen-
eration. Again, the continuation is stylistically consistent
with the seed. Example 4 offers a brief look at interac-
tive composition with ManuScore. Because MusiCOG is
an online cognitive agent, the user can begin playback at
any point in the score and MusiCOG will infer from the
played music and offer a continuation, in a manner similar
to Pachet’s Continuator [27].

We did notice that the use of parallelism tended to follow
a somewhat predictable pattern of similarity and change,
likely due to the use of a threshold-based mechanism for
governing motivic exploitation. Determining parallalism
incrementally, with each new L2 node in the formal plan,
would help break this pattern, potentially generating for-
mal strategies more closely related to the training set.

8. FUTURE WORK

Of particular interest for the immediate future are the im-
plementation of beat/tactus and key/scale induction in the
PE, and polyphonic generation. We are also interested in
further exploring the possibilities offered by PE evaluation
of PM output. For example, PE evaluation could be con-
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trolled parametrically, allowing generation to be ‘steered’
in real-time by the user.

We are also interested in the possibilities offered by intro-
ducing declarative knowledge (as metadata) into the learn-
ing process, in a manner similar to ACT-R. For example,
the system could store instrumentation data during train-
ing, which could be used by the PM to help generate more
idiomatic instrumental material. Finally, it would be valu-
able to give MusiCOG the capacity to learn from the user’s
decisions during interactive composition processes. For
example, a form of reinforcement learning could be used to
strengthen the probabilities of generated material retained
by the user, or to suppress material rejected by the user.

9. CONCLUSION

We have presented an integrated cognitive architecture for
music learning and generation called MusiCOG. Although
other cognitively-grounded generative models exist [28,29],
we believe MusiCOG to be the first integrated architec-
ture, founded on ideas from the field of ICA design. We
have provided some preliminary results indicating the pe-
formance of MusiCOG’s constituent modules, and given
samples of generation from a working implementation of
MusiCOG in the ManuScore interactive composition envi-
ronment.
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[21] I. Deliège, “Cue abstraction as a component of categorisation
processes in music listening,” Psychology of Music, vol. 24,
no. 2, p. 131, 1996.

[22] ——, “Prototype effects in music listening: An empirical ap-
proach to the notion of imprint,” Music Perception, vol. 18,
no. 3, pp. 371–407, 2001.

[23] E. Cambouropoulos, “Musical parallelism and melodic seg-
mentation,” Music Perception, vol. 23, no. 3, pp. 249–268,
2006.

[24] J. Schmidhuber, “Driven by compression progress: A simple
principle explains essential aspects of subjective beauty, nov-
elty, surprise, interestingness, attention, curiosity, creativity,
art, science, music, jokes,” Anticipatory Behavior in Adaptive
Learning Systems, pp. 48–76, 2009.

[25] G. Wiggins, M. Pearce, and D. Müllensiefen, Computational
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